Featured Research

from universities, journals, and other organizations

Rattlesnake-type Poisons Used By Superbug Bacteria To Beat Our Defenses

Date:
September 9, 2008
Source:
Society for General Microbiology
Summary:
Colonies of hospital superbugs can make poisons similar to those found in rattlesnake venom to attack our bodies' natural defenses, according to new research.

Colonies of hospital superbugs can make poisons similar to those found in rattlesnake venom to attack our bodies' natural defences, scientists heard September 8, 2008) at the Society for General Microbiology's Autumn meeting being held at Trinity College, Dublin.

Related Articles


The toxins are manufactured by communities of the hospital superbug Pseudomonas aeruginosa called biofilms, which are up to a thousand times more resistant to antibiotics than free-floating single bacterial cells.

"This is the first time that anyone has successfully proved that the way the bacteria grow – either as a biofilm, or living as individuals – affects the type of proteins they can secrete, and therefore how dangerous they can potentially be to our health," says Dr Martin Welch from the University of Cambridge, UK.

"Acute diseases caused by bacteria can advance at an astonishing rate and tests have associated these types of disease with free-floating bacteria. Such free-floating bugs often secrete tissue-damaging poisons and enzymes to break down our cells, contributing to the way the disease develops, so it is natural to blame them. By contrast, chronic or long-term infections seem to be associated with biofilms, which were thought to be much less aggressive," says Dr Welch.

The research team's findings are very important to the NHS, which spends millions of pounds every year fighting chronic long-term bacterial infections which are incredibly difficult to treat.

"For example, these chronic infections by bacteria are now the major cause of death and serious disability in cystic fibrosis patients – which is the most common lethal inherited disease in the UK and affects about 8,000 people," says Dr Welch.

In cystic fibrosis the gene defect means that people are very susceptible to a particular group of opportunistic bacteria including Pseudomonas aeruginosa, which is one of the three major hospital superbugs. Aggressive antibiotic treatment can usually control the infection in cystic fibrosis sufferers but eventually the strain becomes completely resistant to antibiotics, leading to respiratory failure and death, often while still in their thirties.

"We think that the bacteria in a cystic fibrosis sufferer's lungs are partly living in communities called biofilms, and although medical scientists have investigated their strongly antibiotic-resistant properties, very little research has been done to investigate any active contribution the biofilms might have in causing diseases in the first place," says Dr Welch.

A widely-held view is that biofilms serve as reservoirs of bacteria that do relatively little harm; they just sit there. The main danger is thought to be from 'blooms' of free living cells which occasionally break away from the biofilm and cause periods of poor lung function in the cystic fibrosis patients. "In this scenario, it follows that bacteria in a biofilm will produce fewer disease-causing chemicals than free-living cells of the same type of bacteria, which is a prediction that we can test," says Dr Welch. "We found that, in contrast to expectation, biofilms do indeed produce harmful chemicals. However, the type of tissue-degrading enzymes and toxins made by the biofilm bacteria differ from those produced by free-floating bugs, which may help them to survive attacks by our immune systems."

In addition, the scientists discovered that the biofilm bacteria can produce a protein which their analysis suggests is similar to one of the active ingredients in rattlesnake venom. In the case of rattlesnake venom the protein causes the host cells to commit suicide and die, which is one reason why rattlesnake bites are so dangerous. The research team is currently studying the protein to see if it functions in the same way.

In addition the scientists have found evidence that the trigger for the bacteria to start producing these extra virulence factors is turned on very shortly after the biofilm begins to form. Once the scientists have fully identified the virulence factors created by the biofilm bacteria, the proteins and enzymes may be targeted to develop drugs for a variety of uses, including the treatment of hospital superbugs, cancer and cystic fibrosis.


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

Society for General Microbiology. "Rattlesnake-type Poisons Used By Superbug Bacteria To Beat Our Defenses." ScienceDaily. ScienceDaily, 9 September 2008. <www.sciencedaily.com/releases/2008/09/080907211945.htm>.
Society for General Microbiology. (2008, September 9). Rattlesnake-type Poisons Used By Superbug Bacteria To Beat Our Defenses. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/09/080907211945.htm
Society for General Microbiology. "Rattlesnake-type Poisons Used By Superbug Bacteria To Beat Our Defenses." ScienceDaily. www.sciencedaily.com/releases/2008/09/080907211945.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins