Featured Research

from universities, journals, and other organizations

Researchers Invigorate 'Exhausted' Immune Cells

Date:
September 18, 2008
Source:
The Wistar Institute
Summary:
In battles against chronic infections, the body's key immune cells often become exhausted and ineffective. Researchers have now found a way to restore vigor to these killer T cells by blocking a key receptor on their surface, findings that may advance the development of new therapies for diseases such as HIV, hepatitis B and C, and cancer.

In battles against chronic infections, the body's key immune cells often become exhausted and ineffective. Researchers at The Wistar Institute have found a way to restore vigor to these killer T cells by blocking a key receptor on their surface, findings that may advance the development of new therapies for diseases such as HIV, hepatitis B and C, and cancer.

In their study, published online September 15 in the Proceedings of the National Academy of Sciences (PNAS), Wistar Institute investigators and colleagues report that using an antibody to block the receptor, known as programmed death-1 (PD-1), dramatically restored immunity in chronically infected mice. Furthermore, they discovered a method to distinguish between T cells that can be revitalized in this way and those that can't.

The findings will help researchers develop PD-1 blocking agents, and also provide a way to select patients who may benefit most from such novel drugs, says the study's lead author E. John Wherry, Ph.D., an assistant professor in Wistar's Immunology Program.

"Blocking PD-1 may provide a novel tool to fight chronic infection as well as some cancers, like melanoma, that are susceptible to destruction by the immune system," Wherry said. Examples of infections that often result in T-cell exhaustion are HIV, hepatitis B, and hepatitis C, he says.

Wherry's continuing research on PD-1 has provided the groundwork for developing antibody therapies that inhibit the receptor. Wherry says he knows of a pharmaceutical company preparing to test one of these agents in patients with hepatitis C.

Researchers have known that T cells – white blood cells capable of inducing the death of infected or cancerous cells – become progressively less functional over time. In earlier studies, Wherry and his colleagues found that, during the course of a chronic infection, gene expression in killer T cells changed dramatically as the cells became exhausted and immune response to a pathogen slowed down. Wistar investigators then identified one gene that played a central role in this tamping down of immune response – PD-1, which produces PD-1 protein receptors that stud the surface of these T cells.

In follow-up experiments, they found that if they blocked PD-1 receptors in cell cultures using an antibody made up of one of the protein's natural binding ligands they could alleviate T-cell exhaustion. This demonstrated that PD-1 serves as a "brake" on T-cell function.

Wherry suspects that this reaction is designed to protect a body against the ravages that a chronically over-stimulated immune system can wreak. "The immune system can cause a lot of damage in an effort to control an infection. If you can't clear an infection and are making yourself sick trying to do so, it may be better off to live with the infection than die from the immune-mediated collateral damage," he said.

In the current study, Wherry and colleagues tested in mice infected with lymphocytic choriomeningitis virus the effect of plugging the PD-1 receptor with the antibody, thus releasing the "brake" on the immune system. And they studied two different subsets of killer T cells: those with the highest expression of PD-1 receptors and ones with an "intermediate" expression. Researchers theorized that those T cells with the highest PD-1 expression, signifying the deepest exhaustion, would benefit most from an antibody to PD-1.

To their surprise, that is not what they found. They implanted these two different subsets of cells into infected mice, and then gave the mice a PD-1 antibody. Those mice implanted with T cells with intermediate expression of PD-1 recovered their vigor, while mice with the highest PD-1 expression did not. "It may be the killer T cells expressing a lot more PD-1 are already committed to cell death," Wherry said.

Knowing which subset of T cells will respond to an antibody drug will help physicians identify patients who could respond, if these novel agents reach extensive clinical testing, Wherry says. "We can optimize the promise of such a medical tool and minimize wasteful treatment," he said.

Wherry says this study provides insights into how potential PD-1 agents can be refined so as not to provoke an autoimmune response, in which the body errantly attacks its own tissue. And in the same way, it suggests strategies by which to disarm autoimmune disorders, such as lupus, he says. "If we can understand how to turn PD-1 off to enhance immunity, this will provide insights on how to turn it on to treat autoimmune disorders," Wherry said.

Wistar's Shawn D. Blackburn and Haina Shin assisted with the study, along with Gordon J. Freeman, Ph.D., of the Dana-Farber Cancer Center.

The research was supported by grants from the National Institutes of Health and the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Cite This Page:

The Wistar Institute. "Researchers Invigorate 'Exhausted' Immune Cells." ScienceDaily. ScienceDaily, 18 September 2008. <www.sciencedaily.com/releases/2008/09/080915174546.htm>.
The Wistar Institute. (2008, September 18). Researchers Invigorate 'Exhausted' Immune Cells. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/09/080915174546.htm
The Wistar Institute. "Researchers Invigorate 'Exhausted' Immune Cells." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915174546.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins