Featured Research

from universities, journals, and other organizations

Einstein's Relativity Survives Neutrino Test

Date:
October 17, 2008
Source:
Indiana University
Summary:
Physicists working to disprove "Lorentz invariance" -- Einstein's prediction that matter and massless particles will behave the same no matter how they're turned or how fast they go -- won't get that satisfaction from muon neutrinos, at least for the time being, says a consortium of scientists.

Physicist Stuart Mufson.
Credit: Image courtesy of Indiana University

Physicists working to disprove "Lorentz invariance" -- Einstein's prediction that matter and massless particles will behave the same no matter how they're turned or how fast they go -- won't get that satisfaction from muon neutrinos, at least for the time being, says a consortium of scientists.

The test of Lorentz invariance, conducted by MINOS Experiment scientists and reported in the Oct. 10 issue of Physical Review Letters, started with a stream of muon neutrinos produced at Fermilab particle accelerator, near Chicago, and ended with a neutrino detector 750 meters away and 103 meters below ground. As the Earth does its daily rotation, the neutrino beam rotates too.

"If there's a field out there that can cause violations of Lorentz invariance, we should be able to see its effects as the beam rotates in space," said Indiana University Bloomington astrophysicist Stuart Mufson, a project leader. "But we did not. Einsteinian relativity lives to see another day."

Mufson is quick to point out that the Physical Review Letters report does not disprove the existence of a Lorentz-violating field. Despite the sophistication and power of MINOS's detector, "It may be that the field's effects are so exceedingly small that you'd need extraordinary tools to detect it," Mufson said.

Mufson is a member of the MINOS Experiment, an international consortium of physicists dedicated to studying the mysterious properties of neutrinos, particularly their wave-like oscillations. MINOS stands for Main Injector Neutrino Oscillation Search. MINOS scientists utilize the facilities at Fermilab to create a neutrino beam. The neutrinos are aimed at two detectors: one at Fermilab (the near detector) and another in the Soudan Mine in northern Minnesota (the far detector).

To produce the neutrinos, the MINOS scientists point a proton beam at a carbon target. The interaction causes a spray of pions (or pi mesons, a type of subatomic particle), some of which decay into muon neutrinos in the direction of the detector. Neutrinos travel at close to the speed of light, are unaffected by gravitational and magnetic fields, and because of their peculiar properties, can travel right through the crust of the Earth unaffected.

The notion of a Lorentz-violating field has become popular among theoretical physicists. Known physical rules do not do a very good job of explaining the cataclysmically chaotic moments immediately following the Big Bang, so some physicists are developing new theories to sort out the mess. The possibility that some of these new theories violate relativity was proposed by Mufson colleague Alan Kostelecky, distinguished professor of physics at IU Bloomington. Kostelecky provided some advice to MINOS scientists for the present report.

Kostelecky's "Standard-Model Extension" describes the most general possible Lorentz-violating fields that could arise in the universe's beginnings and also ties together Einstein's relativity rules and post-Einsteinian quantum mechanics.

One of the implications of Kostelecky's ideas is that the Lorentz-violating field could have been very strong during the mind-numbingly brief first moments of our universe. Now that the universe has expanded to considerable size, however, the strength of the Lorentz violating field may be severely reduced, making its existence hard to detect, if it is, indeed, actually there.

"Every experiment so far has not found violations of Lorentz invariance," Mufson said. "That doesn't mean we'll stop looking. We knew the MINOS Experiment presented a new way of seeking out violations, and in a difference place. We do things that are simple and look for something profound."

Mufson says major credit for the research is owed to Brian Rebel, an IU Bloomington Ph.D. graduate who is now a postdoctoral fellow at Fermilab, in Batavia, Ill. Other IU Bloomington contributors include Robert Armstrong, Chuck Bower, Masaki Ishitsuka, Mark Messier, Jim Musser, Jon Paley and Jon Urheim.

The research was funded by the U.S. Department of Energy's Office of Science, the National Science Foundation, the Science & Technology Facilities Council (U.K.), the State and University of Minnesota, the University of Athens (Greece), and A Fundação de Amparo à Pesquisa do Estado de São Paulo and O Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil).

Fermilab (Fermi National Accelerator Laboratory) is run by the U.S. Department of Energy in conjunction with the Fermi Research Alliance.


Story Source:

The above story is based on materials provided by Indiana University. Note: Materials may be edited for content and length.


Cite This Page:

Indiana University. "Einstein's Relativity Survives Neutrino Test." ScienceDaily. ScienceDaily, 17 October 2008. <www.sciencedaily.com/releases/2008/10/081015144155.htm>.
Indiana University. (2008, October 17). Einstein's Relativity Survives Neutrino Test. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2008/10/081015144155.htm
Indiana University. "Einstein's Relativity Survives Neutrino Test." ScienceDaily. www.sciencedaily.com/releases/2008/10/081015144155.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins