Featured Research

from universities, journals, and other organizations

Substantial Loss Of Carbon, Nitrogen From Burned Soils -- And Connections To Warming Climate

Date:
October 16, 2008
Source:
USDA Forest Service, Pacific Northwest Research Station
Summary:
A new study led by the Pacific Northwest Research Station represents the first direct evidence of the toll wildfire can take on forest soil layers. It draws on data from the 2002 Biscuit Fire, which scorched some 500,000 acres in southwest Oregon.

New research conducted by PNW Research Station scientists and their colleagues on the 2002 Biscuit Fire is the first to document the toll of wildfire on forest soils -- namely, the loss of significant amounts of carbon and nitrogen and 1 full inch of the upper soil layer. The work also raises an intriguing question: might the missing fine soil have been transported away in the fire's massive smoke plume, such as the one seen in this satellite image from July 29, 2002? Large plumes of smoke, some more than 900 miles long, were visible most days during the months-long fire, and scientists know that smoke contains fine mineral-soil particles as well as partially burned organic matter. The possibility that a substantial mass of mineral-soil particles was transported high into the atmosphere raises new questions about the effects of intense fire on radiation interception and offsite land and ocean fertilization.
Credit: Image courtesy of MODIS

For decades, scientists and resource managers have known that wildfires affect forest soils, evidenced, in part, by the erosion that often occurs after a fire kills vegetation and disrupts soil structure. But, the lack of detailed knowledge of forest soils before they are burned by wildfire has hampered efforts to understand fire's effects on soil fertility and forest ecology.

A new study led by the Pacific Northwest (PNW) Research Station addresses this critical information gap and represents the first direct evidence of the toll wildfire can take on forest soil layers. It draws on data from the 2002 Biscuit Fire, which scorched some 500,000 acres in southwest Oregon, including half of a pre-existing study's experimental plots, which had been studied extensively before the fire. The result was a serendipitous and unprecedented opportunity to directly examine how wildfire changes soil by sampling soils before and after a wildfire.

"Losing our experiment in the fire was hard, but the opportunity to better understand fire as a dominant ecosystem process has been very exciting," said Bernard Bormann, a research forest ecologist with PNW Research Station and the study's lead investigator. "This study, covering over 300 acres, provided nearly 400 soil sampling points as well as extensive tree and understory plots to use in our analysis."

Bormann—along with study co-author and Western Washington University professor Peter Homann and colleagues from the PNW Research Station and Oregon State University—conducted chemical analyses on soil samples collected before and after the fire. They found that the combustion of the organic layer at the soil's surface, including woody debris, caused intense, 1,300 F-plus temperatures, which, in turn, displaced considerable amounts of carbon and nitrogen from the underlying mineral soil layer and left mostly ash behind. What was more surprising to the researchers was how these organic materials may have been lost. Some carbon and nitrogen were lost as gases—consisting mostly of carbon dioxide, nitrogen dioxide, and water vapor—and some in an inch of fine mineral-soil particles, which disappeared and left behind a crust of rocks.

"Altogether, we documented losses of more than 10 tons per acre of carbon and between 450 to 620 pounds per acre of nitrogen," Bormann said. "The loss of topsoil and combustion of organic materials together led to losses that are higher than most previous estimates."

The loss of topsoil and carbon from soil can negatively affect a range of processes, Bormann said, including nutrient retention and water infiltration. In the absence of special nitrogen-fixing plants, which are capable of converting atmospheric nitrogen into nitrogen compounds for growth, losses of nitrogen in the order of what he and his colleagues documented would require at least a century to be reversed.

Equally disconcerting is the role these released organic materials might have on the atmosphere, especially in the face of a warming climate. The burning of soil by wildfire may contribute to global warming, in the short term, by releasing carbon as a greenhouse gas and, in the long term, by reducing soil productivity through losses of organic matter and nutrients. With less productive soils, Bormann said, a forest will not grow as quickly nor reabsorb as much carbon as before a burn—a process critical to mitigating the accumulation of atmospheric carbon, which traps heat in the atmosphere and can, thus, raise temperatures.

"Our findings suggest that forest managers should carefully consider the effects of wildfire on soils when planning to reduce fuels, suppress future fires, and help trees and habitat recover after fire," Bormann said.


Story Source:

The above story is based on materials provided by USDA Forest Service, Pacific Northwest Research Station. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bernard T. Bormann, Peter S. Homann, Robyn L. Darbyshire, and Brett A. Morrissette. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Canadian Journal of Forest Research, 38(11): 2771%u20132783 (2008) DOI: 10.1139/X08-136

Cite This Page:

USDA Forest Service, Pacific Northwest Research Station. "Substantial Loss Of Carbon, Nitrogen From Burned Soils -- And Connections To Warming Climate." ScienceDaily. ScienceDaily, 16 October 2008. <www.sciencedaily.com/releases/2008/10/081016124041.htm>.
USDA Forest Service, Pacific Northwest Research Station. (2008, October 16). Substantial Loss Of Carbon, Nitrogen From Burned Soils -- And Connections To Warming Climate. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2008/10/081016124041.htm
USDA Forest Service, Pacific Northwest Research Station. "Substantial Loss Of Carbon, Nitrogen From Burned Soils -- And Connections To Warming Climate." ScienceDaily. www.sciencedaily.com/releases/2008/10/081016124041.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins