Featured Research

from universities, journals, and other organizations

Ultrafast Lasers Show Snapshot Of Electrons In Action

Date:
October 31, 2008
Source:
University of Colorado at Boulder
Summary:
In the quest to slow down and ultimately understand chemistry at the level of atoms and electrons, scientists have found a new way to peer into a molecule that allows them to see how its electrons rearrange as the molecule changes shape.

A laser beam first excites dinitrogen tetraoxide molecules, or N2O4, inducing large vibrations. A second laser beam then generates X-rays from the vibrating molecules.
Credit: Image courtesy of University of Colorado at Boulder

In the quest to slow down and ultimately understand chemistry at the level of atoms and electrons, University of Colorado at Boulder and Canadian scientists have found a new way to peer into a molecule that allows them to see how its electrons rearrange as the molecule changes shape.

Understanding how electrons rearrange during chemical reactions could lead to breakthroughs in materials research and in fields like catalysis and alternative energy, according to CU-Boulder physics professors and JILA fellows Margaret Murnane and Henry Kapteyn, who led the research efforts with scientist Albert Stolow of the Canadian National Research Council's Steacie Institute for Molecular Sciences.

"The Holy Grail in molecular sciences would be to be able to look at all aspects of a chemical reaction and to see how atoms are moving and how electrons are rearranging themselves as this happens," Murnane said. "We're not there yet, but this is a big step toward that goal."

To be able to chart a chemical reaction, scientists need to be able to see how bonds are formed or broken between atoms in a molecule during chemical reactions. But only extremely limited tools are available to view the rapidly changing electron cloud that surrounds a molecule as the atoms move around, Murnane said. Changes in the electron cloud can happen on timescales of less than a femtosecond, or one quadrillionth of a second, representing some of the fastest processes in the natural world.

In a paper to appear in the Oct. 30 issue of Science Express, the online version of the journal Science, the CU team describes how they shot a molecule of dinitrogen tetraoxide, or N2O4, with a short burst of laser light to induce very large oscillations within the molecule. They then used a second laser to produce an X-ray, which was used to map the electron energy levels of the molecule, and most importantly, to understand how these electron energy levels rearrange as the molecule changes its shape, according to Kapteyn.

"This is a fundamentally new way of looking at molecules," Kapteyn said. "This process allowed us to freeze the motion of electrons in a system, and to capture their dizzying dance."

The researchers describe their process of stretching the N2O4 molecule as being similar to pulling on a Slinky toy and then letting it go and watching it vibrate. They used the N2O4 molecule because it vibrates more slowly compared to other molecules, allowing them to observe the physical processes under way.

In many ways, molecules are like tiny masses connected by tiny springs of differing strengths, Murnane said. These springs are the chemical bonds, made up of shared electrons, which hold all matter together. In this experiment they used ultrafast laser pulses to "twang" these springs, making the nanoscale molecular Slinkies vibrate. However, unlike real springs, when researchers vibrate the molecules their properties can change, she said.

Being able to watch and understand why the electrons did what they did is very useful in fields like alternative energy, according to the researchers.

"If we understand the nature of these processes, in the future we can then translate that knowledge into better technology, such as creating more efficient light-harvesting molecules or catalysis or perhaps even solar cells," Stolow said.

The research was completed by an international team with JILA Research Associate Wen Li as the paper's corresponding author. He worked with CU-Boulder physics graduate students Xibin Zhou and Robynne Lock as well as Serguei Patchkovskii and Stolow of the Steacie Institute for Molecular Sciences in Ottawa, Canada.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University of Colorado at Boulder. "Ultrafast Lasers Show Snapshot Of Electrons In Action." ScienceDaily. ScienceDaily, 31 October 2008. <www.sciencedaily.com/releases/2008/10/081030144622.htm>.
University of Colorado at Boulder. (2008, October 31). Ultrafast Lasers Show Snapshot Of Electrons In Action. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/10/081030144622.htm
University of Colorado at Boulder. "Ultrafast Lasers Show Snapshot Of Electrons In Action." ScienceDaily. www.sciencedaily.com/releases/2008/10/081030144622.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins