Featured Research

from universities, journals, and other organizations

Rheumatoid Arthritis Breakthrough

Date:
November 12, 2008
Source:
Public Library of Science
Summary:
Rheumatoid arthritis is a painful, inflammatory type of arthritis that occurs when the body's immune system attacks itself. A new article in PLoS Biology, reports a breakthrough in the understanding of how autoimmune responses can be controlled, offering a promising new strategy for therapy development for rheumatoid arthritis.

Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells.
Credit: Andersen KG, Butcher T, Betz AG et al.

Rheumatoid arthritis is a painful, inflammatory type of arthritis that occurs when the body's immune system attacks itself. A new article reports a breakthrough in the understanding of how autoimmune responses can be controlled, offering a promising new strategy for therapy development for rheumatoid arthritis.

Related Articles


Normally, immune cells develop to recognise foreign material – antigens; including bacteria - so that they can activate a response against them. Immune cells that would respond to 'self' and therefore attack the body's own cells are usually destroyed during development. If any persist, they are held in check by special regulatory cells that provide a sort of autoimmune checkpoint. A key player in these regulatory cells is a molecule called Foxp3. People who lack or have mutated versions of the Foxp3 gene lack or have dysfunctional immune regulation, which causes dramatic autoimmune disease.

Scientists at the Medical Research Council's Laboratory of Molecular Biology in Cambridge, and funded by the Arthritis Research Campaign, have genetically engineered a drug-inducible form of Foxp3. Using this, scientists can 'switch' developing immune cells into regulatory cells that are then capable of suppressing the immune response.

Dr. Alexander Betz, Group Leader at the MRC laboratory, explains: "We have generated a modified form of Foxp3 which can be introduced into immune cells using genetic engineering techniques and then activated by a simple injection. When administered to and activated in animal models of arthritis, the modified cells inhibit or even reverse the disease process."

Further work is now aimed at elucidating the detailed molecular mechanisms involved in Foxp3 function, and transferring the experimental approach to human cells.

"First, we will develop a human Foxp3 factor and then assess its function in human arthritis models," said Dr Betz. "To be viable as a therapeutic option, the regulatory cells must fulfill certain criteria; they must be tissue matched to the patient for compatibility; they must only block the targeted disease and not the whole body immune response; and they have to home correctly to their target tissue. Establishing these criteria will be the key focus of our research.

"If Foxp3 functions as a key developmental switch in human immune cells, there is potential for a new avenue of therapy development that could transform arthritis treatment is substantial," he added.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andersen KG, Butcher T, Betz AG. Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells. PLoS Biol, 6(11): e276 DOI: 10.1371/journal.pbio.0060276

Cite This Page:

Public Library of Science. "Rheumatoid Arthritis Breakthrough." ScienceDaily. ScienceDaily, 12 November 2008. <www.sciencedaily.com/releases/2008/11/081111203455.htm>.
Public Library of Science. (2008, November 12). Rheumatoid Arthritis Breakthrough. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2008/11/081111203455.htm
Public Library of Science. "Rheumatoid Arthritis Breakthrough." ScienceDaily. www.sciencedaily.com/releases/2008/11/081111203455.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins