Featured Research

from universities, journals, and other organizations

Water Vapor Confirmed As Major Player In Climate Change

Date:
November 18, 2008
Source:
NASA/Goddard Space Flight Center
Summary:
Water vapor is known to be Earth's most abundant greenhouse gas, but the extent of its contribution to global warming has been debated. Using recent NASA satellite data, researchers have estimated more precisely than ever the heat-trapping effect of water in the air, validating the role of the gas as a critical component of climate change.

The distribution of atmospheric water vapor, a significant greenhouse gas, varies across the globe. During the summer and fall of 2005, this visualization shows that most vapor collects at tropical latitudes, particularly over south Asia, where monsoon thunderstorms swept the gas some 2 miles above the land.
Credit: NASA

Water vapor is known to be Earth's most abundant greenhouse gas, but the extent of its contribution to global warming has been debated. Using recent NASA satellite data, researchers have estimated more precisely than ever the heat-trapping effect of water in the air, validating the role of the gas as a critical component of climate change.

Andrew Dessler and colleagues from Texas A&M University in College Station confirmed that the heat-amplifying effect of water vapor is potent enough to double the climate warming caused by increased levels of carbon dioxide in the atmosphere.

With new observations, the scientists confirmed experimentally what existing climate models had anticipated theoretically. The research team used novel data from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite to measure precisely the humidity throughout the lowest 10 miles of the atmosphere. That information was combined with global observations of shifts in temperature, allowing researchers to build a comprehensive picture of the interplay between water vapor, carbon dioxide, and other atmosphere-warming gases. The NASA-funded research was published recently in the American Geophysical Union's Geophysical Research Letters.

"Everyone agrees that if you add carbon dioxide to the atmosphere, then warming will result," Dessler said. "So the real question is, how much warming?"

The answer can be found by estimating the magnitude of water vapor feedback. Increasing water vapor leads to warmer temperatures, which causes more water vapor to be absorbed into the air. Warming and water absorption increase in a spiraling cycle.

Water vapor feedback can also amplify the warming effect of other greenhouse gases, such that the warming brought about by increased carbon dioxide allows more water vapor to enter the atmosphere.

"The difference in an atmosphere with a strong water vapor feedback and one with a weak feedback is enormous," Dessler said.

Climate models have estimated the strength of water vapor feedback, but until now the record of water vapor data was not sophisticated enough to provide a comprehensive view of at how water vapor responds to changes in Earth's surface temperature. That's because instruments on the ground and previous space-based could not measure water vapor at all altitudes in Earth's troposphere -- the layer of the atmosphere that extends from Earth's surface to about 10 miles in altitude.

AIRS is the first instrument to distinguish differences in the amount of water vapor at all altitudes within the troposphere. Using data from AIRS, the team observed how atmospheric water vapor reacted to shifts in surface temperatures between 2003 and 2008. By determining how humidity changed with surface temperature, the team could compute the average global strength of the water vapor feedback.

"This new data set shows that as surface temperature increases, so does atmospheric humidity," Dessler said. "Dumping greenhouse gases into the atmosphere makes the atmosphere more humid. And since water vapor is itself a greenhouse gas, the increase in humidity amplifies the warming from carbon dioxide."

Specifically, the team found that if Earth warms 1.8 degrees Fahrenheit, the associated increase in water vapor will trap an extra 2 Watts of energy per square meter (about 11 square feet).

"That number may not sound like much, but add up all of that energy over the entire Earth surface and you find that water vapor is trapping a lot of energy," Dessler said. "We now think the water vapor feedback is extraordinarily strong, capable of doubling the warming due to carbon dioxide alone."

Because the new precise observations agree with existing assessments of water vapor's impact, researchers are more confident than ever in model predictions that Earth's leading greenhouse gas will contribute to a temperature rise of a few degrees by the end of the century.

"This study confirms that what was predicted by the models is really happening in the atmosphere," said Eric Fetzer, an atmospheric scientist who works with AIRS data at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Water vapor is the big player in the atmosphere as far as climate is concerned."


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Water Vapor Confirmed As Major Player In Climate Change." ScienceDaily. ScienceDaily, 18 November 2008. <www.sciencedaily.com/releases/2008/11/081117193013.htm>.
NASA/Goddard Space Flight Center. (2008, November 18). Water Vapor Confirmed As Major Player In Climate Change. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2008/11/081117193013.htm
NASA/Goddard Space Flight Center. "Water Vapor Confirmed As Major Player In Climate Change." ScienceDaily. www.sciencedaily.com/releases/2008/11/081117193013.htm (accessed September 23, 2014).

Share This



More Earth & Climate News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com
Ongoing Drought, Fighting Put Somalia at Risk of Famine

Ongoing Drought, Fighting Put Somalia at Risk of Famine

AFP (Sep. 22, 2014) After a year of poor rains and heavy fighting Somalia is again at risk of famine, just three years after food shortages killed 260,000 people. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins