Featured Research

from universities, journals, and other organizations

Tiny Protein Provokes Healthy Bonding Between Cells

Date:
November 26, 2008
Source:
Johns Hopkins University
Summary:
In human relationships, a certain "spark" often governs whether we prefer one person to another. Critical first impressions can occur within seconds. Researchers have found that cell-to-cell "friendships" operate in much the same way and that dysfunctional bonding is linked to the spread of cancer.

In human relationships, a certain "spark" often governs whether we prefer one person to another, and critical first impressions can occur within seconds. A team lead by Johns Hopkins researchers has found that cell-to-cell "friendships" operate in much the same way and that dysfunctional bonding is linked to the spread of cancer.

Related Articles


"Bonding between cells has important health implications," said the study's senior author, Denis Wirtz, a professor of chemical and biomolecular engineering in the Whiting School of Engineering at Johns Hopkins. "When cancer cells break free from their neighbors, they can spread the disease through the body. If we can learn more about this process, we may find new ways to keep cancer in check."

Toward that goal, Wirtz, who also is associate director of the Johns Hopkins Institute for NanoBioTechnology, led a multi-institution team that focused on alpha-catenin, a small protein that floats in the cytoplasm, the gel-like material that surrounds the nucleus inside a cell. Alpha-catenin allows cells to recognize neighboring cells as "friends" almost immediately, leading to the creation of many strong bonds that are hard to break. However, cancer cells, including those found in diffuse gastric cancer and lung cancer, possess dysfunctional alpha-catenin and form very weak bonds with their neighbors. This allows them to break free from cell masses and spread cancer throughout the body.

To better understand these bonding characteristics, Wirtz and his colleagues used a technique called atomic force microscopy to study single cells with and without functioning alpha-catenin. This technique records tiny forces, measured in nanoNewtons, that cells exert upon one another.

Wirtz's team discovered that normal cells with properly functioning alpha-catenin formed bonds that were four times more stable than those without functional alpha-catenin, and these first bonds formed in less than 1 millisecond. The longer the cells remained in contact with one another, the more numerous and stronger these bonds became. The connections between these cells resembled those that occur with a popular type of fastener material. "This accelerated formation of additional bonds between neighboring cells was akin to the 'Velcro' effect," Wirtz said.

In contrast, cells without functional alpha-catenin formed weak bonds from the onset. Also, even as these cells remained in contact, bonding strengths continued to diminish. Wirtz suggested that if scientists could figure out a way to repair or replace the alpha-catenin dysfunction found in some cancer cells, it could lead to a therapy that thwarts the spread of cancer.

The research team members included Sean Sun, a Johns Hopkins associate professor of mechanical engineering; Saumendra Bajpai, a graduate student in the Johns Hopkins Department of Chemical and Biomolecular Engineering; Gianpaolo Suriano, Joana Figueiredo and Joana Correia, all affiliated with the Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; and Gregory Longmore and Yunfeung Feng of the departments of Medicine and Cell Biology, Washington University of St. Louis.

This work was supported by grants from the American Heart Association and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Saumendra Bajpai et al. α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. PNAS, Online November 18, 2008; November 25 print edition DOI: 10.1073/pnas.0806783105

Cite This Page:

Johns Hopkins University. "Tiny Protein Provokes Healthy Bonding Between Cells." ScienceDaily. ScienceDaily, 26 November 2008. <www.sciencedaily.com/releases/2008/11/081125141606.htm>.
Johns Hopkins University. (2008, November 26). Tiny Protein Provokes Healthy Bonding Between Cells. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2008/11/081125141606.htm
Johns Hopkins University. "Tiny Protein Provokes Healthy Bonding Between Cells." ScienceDaily. www.sciencedaily.com/releases/2008/11/081125141606.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins