Featured Research

from universities, journals, and other organizations

Molecular Partnership Controls Daily Rhythms, Body Metabolism

Date:
December 3, 2008
Source:
University of Pennsylvania School of Medicine
Summary:
A research team has discovered a key molecular partnership that coordinates body rhythms and metabolism. Their findings suggest that HDAC via NCoR controls the body's internal clock, and therefore metabolism, through an epigenetic change.

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has discovered a key molecular partnership that coordinates body rhythms and metabolism.

Lazar and his colleagues, including the study’s first author, Penn Veterinary Medicine doctoral student Theresa Alenghat, studied a protein called NCoR that modulates the body’s responses to metabolic hormones. They engineered a mutation into mice that prevents NCoR from working with an enzyme that is normally its partner, HDAC3. These animals showed changes in the expression of clock and metabolic genes, and were leaner, more sensitive to insulin, and on different sleep-wake cycles than controls.

The role of the NCoR-HDAC3 partnership in regulating the body’s internal clock was previously unknown. HDAC3 is an enzyme that affects gene expression by binding to receptors in the cell nucleus to affect genes' activity, but not by directly changing DNA. The findings suggest that HDAC via NCoR controls the body’s internal clock, and therefore metabolism, through this epigenetic change. Their findings are reported in Nature on November 26.

“In the fight against the obesity and diabetes epidemics, disruption of NCoR and its enzyme partner, might be a valuable new weapon,” says Lazar.

Most physiological processes cycle every day and night, and the most well-known of these circadian rhythms is the sleep-wake cycle. Abnormal sleep patterns, such as those of shift-workers, can be risk factors for metabolic disorders such as obesity and diabetes. “These diseases have reached epidemic proportions, so scientists are urgently seeking to understand the connections between biological rhythms and metabolism,” notes Lazar.

The daily rhythm of mice with the disrupted molecular partnership was shortened by almost half an hour. Over time, this added up to a shifted daily rhythm.

The mice were also leaner (not gaining as much weight when put on a high-fat diet), and they were protected from developing resistance to the action of insulin, which is a hallmark of the most common form of diabetes in people. Expression of several metabolic genes was also altered in the engineered mice.

“The molecular partnership regulates hormone action as well as clock genes that coordinate circadian rhythms,” says Lazar. “It’s extraordinary that, despite their abnormal sleep-wake cycle, which might have been predicted to cause metabolic problems, the mice were actually healthier metabolically.

“However this finding doesn’t mean people should start changing their sleep patterns because this is really evidence that there is coordination between metabolism and circadian activities, including sleep,” cautions Lazar. “It’s not that the mice are sleeping less, it’s that their sleep cycle is shifted, when compared to mice maintained on a normal sleep-wake cycle.”

Companies are currently targeting enzymes like HDAC with drugs called histone deacetylase (HDAC) inhibitors. “However there are dozens of HDACs, which do not all have the same molecular target,” says Lazar. “If we target all of them we will get unwanted side effects related to the other HDACs. Our results suggest that HDAC3, and especially its partnership with NCoR, could be a specific target for diabetes and obesity.”

In addition to Lazar and Alenghat, Penn co-authors are Katherine Meyers, Shannon Mullican, Kirstin Leitner, Adetoun Adeniji-Adele, Jacqueline Avila, Maja Bućan, Rex Ahima, and Klaus Kaestner. The National Institute of Diabetes and Digestive and Kidney Diseases provided funding for this research.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Molecular Partnership Controls Daily Rhythms, Body Metabolism." ScienceDaily. ScienceDaily, 3 December 2008. <www.sciencedaily.com/releases/2008/11/081126150749.htm>.
University of Pennsylvania School of Medicine. (2008, December 3). Molecular Partnership Controls Daily Rhythms, Body Metabolism. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/11/081126150749.htm
University of Pennsylvania School of Medicine. "Molecular Partnership Controls Daily Rhythms, Body Metabolism." ScienceDaily. www.sciencedaily.com/releases/2008/11/081126150749.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins