Featured Research

from universities, journals, and other organizations

Gene Therapy Corrects Sickle Cell Disease In Laboratory Study

Date:
December 4, 2008
Source:
St. Jude Children's Research Hospital
Summary:
Using a harmless virus to insert a corrective gene into mouse blood cells, scientists have alleviated sickle cell disease pathology. In their studies, the researchers found that the treated mice showed essentially no difference from normal mice. Although the scientists caution that applying the gene therapy to humans presents significant technical obstacles, they believe that the new therapy will become an important treatment for the disease.

Sickle-shaped red blood cells.
Credit: Image courtesy of Wikimedia Commons

Using a harmless virus to insert a corrective gene into mouse blood cells, scientists at St. Jude Children's Research Hospital have alleviated sickle cell disease pathology. In their studies, the researchers found that the treated mice showed essentially no difference from normal mice. Although the scientists caution that applying the gene therapy to humans presents significant technical obstacles, they believe that the new therapy will become an important treatment for the disease.

Sickle cell disease, which affects millions of people worldwide, arises because of a tiny genetic defect in the gene for beta-globin, a protein component of hemoglobin. This defect causes hemoglobin-containing red blood cells to tend to deform, clump and break apart. The resulting clogged blood vessels can lead to cognitive dysfunction by causing small strokes in the brain and cause damage to kidneys, liver, spleen and lungs. The only permanent cure for the disease is a bone marrow transplant to give recipients blood-forming cells that will form normal beta-globin. However, such transplants are rare because of the lack of compatible donors.

Researchers have long known that symptoms of the disease could be alleviated by persistence in the blood of an immature fetal form of hemoglobin in red blood cells. This immature hemoglobin, which usually disappears after birth, does not contain beta-globin, but another form called gamma-globin. St. Jude researchers had found that treating patients with the drug hydroxyurea encourages the formation of fetal hemoglobin and alleviates disease symptoms.

"While this is a very useful treatment for the disease, our studies indicated that it might be possible to cure the disorder if we could use gene transfer to permanently increase fetal hemoglobin levels," said Derek Persons, M.D., Ph.D., assistant member in the St. Jude Department of Hematology.

He and his colleagues developed a technique to insert the gene for gamma-globin into blood-forming cells using a harmless viral carrier. The researchers extracted the blood-forming cells, performed the viral gene insertion in a culture dish and then re-introduced the altered blood-forming cells into the body. The hope was that those cells would permanently generate red blood cells containing fetal hemoglobin, alleviating the disease.

In the experiments, reported in the advanced, online issue of the journal Molecular Therapy, the researchers used a strain of mouse with basically the same genetic defect and symptoms as humans with sickle cell disease. The scientists introduced the gene for gamma-globin into the mice's blood-forming cells and then introduced those altered cells into the mice.

The investigators found that months after they introduced the altered blood-forming cells, the mice continued to produce gamma-globin in their red blood cells.

"When we examined the treated mice, we could detect little, if any, disease using our methods," said Persons, the paper's senior author. "The mice showed no anemia, and their organ function was essentially normal."

The researchers also transplanted the altered blood-forming cells from the original treated mice into a second generation of sickle cell mice to show that the gamma-globin gene had incorporated itself permanently into the blood-forming cells. Five months after that transplantation, the second generation of mice also showed production of fetal hemoglobin and correction of their disease.

"We are very encouraged by our results," Persons said. "They demonstrate for the first time that it is possible to correct sickle cell disease with genetic therapy to produce fetal hemoglobin. We think that increased fetal hemoglobin expression in patients will be well tolerated and the immune system would not reject the hemoglobin, in comparison to other approaches."

While Persons believes that the mouse experiments will lead to treatments in humans, he cautioned that technical barriers still need to be overcome. "It is far easier to achieve high levels of gene insertion into mouse cells than into human cells," he said. "In our mouse experiments, we routinely saw one or two copies of the gamma-globin gene inserted into each cell. However, in humans this insertion rate is at least a hundred-fold less."

Persons' laboratory is currently working with other animal and human cells to develop methods to achieve a high enough gene insertion rate to make the gene therapy clinically useful.

Other authors of this paper include Tamara Pestina, Phillip Hargrove, Dennis Jay, John Gray and Kelli Boyd (all of St. Jude).

This research was supported in part by the National Heart, Lung, and Blood Institute, a Cancer Center Support Core Grant and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Cite This Page:

St. Jude Children's Research Hospital. "Gene Therapy Corrects Sickle Cell Disease In Laboratory Study." ScienceDaily. ScienceDaily, 4 December 2008. <www.sciencedaily.com/releases/2008/12/081203184643.htm>.
St. Jude Children's Research Hospital. (2008, December 4). Gene Therapy Corrects Sickle Cell Disease In Laboratory Study. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2008/12/081203184643.htm
St. Jude Children's Research Hospital. "Gene Therapy Corrects Sickle Cell Disease In Laboratory Study." ScienceDaily. www.sciencedaily.com/releases/2008/12/081203184643.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins