Featured Research

from universities, journals, and other organizations

Dry Winter Weather Results In Highest Particulate Pollution Levels From Traffic

Date:
December 6, 2008
Source:
Inderscience
Summary:
Dry winter weather and low level mixing of pollutants from vehicle exhausts in cities leads to the highest concentrations of the tiny soot particles, known as PM10 particles, according to an article in the International Journal of Environment and Pollution. These findings suggest that traffic controls, other than an outright ban for several days at a time, would have little effect on levels.

Dry winter weather and low level mixing of pollutants from vehicle exhausts in cities leads to the highest concentrations of the tiny soot particles, known as PM10 particles, according to German scientists writing in the January issue of the International Journal of Environment and Pollution. Their findings suggest that traffic controls, other than an outright ban for several days at a time, would have little effect on levels.

Related Articles


Particulate matter of less than 10 nanometres across and smaller can penetrate the deepest parts of the lungs. PM10 have thus been associated with an increased incidence of breathing problems, asthma, and even lung cancer among city dwellers.

Jutta Rost of the Meteorological Institute, at the University of Freiburg, and colleagues there and at the Fraunhofer Institute for Transportation and Infrastructure Systems, in Dresden, and the Federal State Institute for Environmental Protection, in Baden-Wuerttemberg, have carried out a retrospective analysis of the atmospheric conditions that affected PM10 levels in four cities in South-West Germany during the period from 2001 to 2005.

For each city, the team obtained particular, PM10, data from roadside stations and Urban Background (UB) stations. This provided them with two distinct types of official urban air quality data against which they could validate their findings. They then looked at atmospheric exchange conditions as represented by sunlight levels, air temperature, wind speed, rainfall, and the height at which PM10 particles and other pollutants are mixing with the atmosphere.

The results of the statistical analysis indicate that precipitation and mixing-layer height are the two main meteorological variables that influencing concentrations of PM10 particles at road level within cities. "The absence of precipitation and low values of the mixing-layer height lead to comparatively high PM10 levels, particularly in winter," the researchers say. The data from both types of measuring stations gave the same results.

The team hopes to develop a forecasting model of PM10 levels that could be used to advise people at most risk of breathing problems on when to avoid city centres and other urban areas. The work also has implications for ensuring that air quality in urban environments is maintained at levels safe for public health.


Story Source:

The above story is based on materials provided by Inderscience. Note: Materials may be edited for content and length.


Cite This Page:

Inderscience. "Dry Winter Weather Results In Highest Particulate Pollution Levels From Traffic." ScienceDaily. ScienceDaily, 6 December 2008. <www.sciencedaily.com/releases/2008/12/081204074814.htm>.
Inderscience. (2008, December 6). Dry Winter Weather Results In Highest Particulate Pollution Levels From Traffic. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2008/12/081204074814.htm
Inderscience. "Dry Winter Weather Results In Highest Particulate Pollution Levels From Traffic." ScienceDaily. www.sciencedaily.com/releases/2008/12/081204074814.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Undersea Quake Shakes Taiwan

Raw: Undersea Quake Shakes Taiwan

AP (Apr. 20, 2015) A strong undersea earthquake struck between Taiwan and southern Japan on Monday, sparking a house fire that killed a person outside of Taiwan&apos;s capital. (April 20) Video provided by AP
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins