Featured Research

from universities, journals, and other organizations

How Disease Disables Tomato Plant's 'Intruder Alarm'

Date:
December 8, 2008
Source:
Imperial College London
Summary:
How a bacterium overcomes a tomato plant's defenses and causes disease, by sneakily disabling the plant's intruder detection systems, is revealed in new research in Current Biology.

How a bacterium overcomes a tomato plant's defences and causes disease, by sneakily disabling the plant's intruder detection systems, is revealed in new research.
Credit: iStockphoto

How a bacterium overcomes a tomato plant's defences and causes disease, by sneakily disabling the plant's intruder detection systems, is revealed in new research in Current Biology.

The new study focuses on a pathogen which causes bacterial speck disease in tomato plants. This bacterial invasion causes black lesions on leaves and fruit. Severe infection can cause extensive and costly damage to tomato crops, and researchers believe that understanding more about how this microbe works could lead to new ways of tackling it, and other plant diseases, without the need for pesticides.

Scientists have found that the pathogen is very effective at attacking tomato plants because it deactivates and destroys receptors which normally alert the plant to the presence of a dangerous disease - in the same way that an intruder would deactivate the burglar alarm before gaining entry to a house.

Professor John Mansfield from Imperial College London's Department of Life Sciences, one of the authors of the paper, says: "Once the receptors have been taken out, the plant's defences are 'offline' and the bacterium is able to spread rapidly, feeding on the plant without encountering any kind of resistance."

Together with colleagues at the Max Planck Institute in Cologne and Zurich-Basel Plant Science Centre, Professor Mansfield used an experimental model plant called Arabidopsis, which is also affected by the disease, to examine what happens at the molecular level when bacterial speck infects a plant. The team found that the pathogen injects a protein into the host cell, which then deactivates and destroys, from the inside, receptors on the cell's surface which are designed to alert the plant to the presence of invading microbes.

Deactivating the receptors stalls the plant's defence mechanism in its initial stages - ordinarily the cell surface receptors would kickstart a chain reaction leading to the production of antimicrobial compounds to fight and kill off the bacterial invader.

Professor Mansfield says: "This area of research has a wider significance beyond black speck disease in tomato, because the microbes that cause plant diseases probably all employ similar attacking strategies to suppress resistance in their hosts. The more we understand about how the pathogens that cause disease overcome the innate immunity to infection in crop plants, the better our chances of developing approaches to disease control that do not require the use of potentially harmful pesticides"

The research at Imperial was funded by the UK Biotechnology and Biological Sciences Research Council

 


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vera Gohre et al. The plant pattern recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Current Biology, Onlinr 4 December 2008

Cite This Page:

Imperial College London. "How Disease Disables Tomato Plant's 'Intruder Alarm'." ScienceDaily. ScienceDaily, 8 December 2008. <www.sciencedaily.com/releases/2008/12/081204133359.htm>.
Imperial College London. (2008, December 8). How Disease Disables Tomato Plant's 'Intruder Alarm'. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/12/081204133359.htm
Imperial College London. "How Disease Disables Tomato Plant's 'Intruder Alarm'." ScienceDaily. www.sciencedaily.com/releases/2008/12/081204133359.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) — A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins