Featured Research

from universities, journals, and other organizations

An Old Dream Fulfilled: Zinc Oxide As Semiconductor

Date:
December 8, 2008
Source:
Ruhr-Universitaet-Bochum
Summary:
Zinc oxide is a “jack of all trades” – thousands of tons are produced all over the world every year for a wide range of uses. Zinc oxide has been used for everything from a food additive to a sun screening agent. It is even a significant semiconductor, although the long-awaited breakthrough in this field is yet to come. Perfect doping -- important in the production of semiconductor devices --  is not yet possible. Researchers now a clearer understanding of why.

Research scientists at the Ruhr-University in Bochum were able to show that hydrogen atoms always result in n-doping. They could reversibly dope zinc oxide substrates using hydrogen and then eliminate the hydrogen by heating.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Zinc oxide is a “jack of all trades” – thousands of tons are produced all over the world every year for a wide range of uses. Zinc oxide has been used for everything from a food additive to a sun screening agent. It is even a significant semiconductor, although the long-awaited breakthrough in this field is yet to come. Perfect doping -- important in the production of semiconductor devices --  is not yet possible.

A team of chemical scientists at the Ruhr-University in Bochum, working under the auspices of Prof. Christof Wöll, is a step closer to unveiling the reason. They were experimentally able to provide evidence that hydrogen atoms disturb the process. Controlled concentration of hydrogen atoms during the production of intrinsic zinc oxide is thus the key to the routine use of ZnO as semiconductor.

Doping activates the semiconductor

Doping, i.e. the insertion of specific foreign atoms into the crystal lattice of a solid, is the most important factor during the production of semiconductor devices. These foreign atoms either release an electron (n-doping), or absorb an electron, thus creating a “hole” in the solid (p-doping). These mobile electrons or holes then bring about the electric conductivity of the otherwise isolated semiconductor, i.e. doping initiates “action” in the semiconductor. This standard process in the manufacturing of conventional semiconductors e.g. silicon or germanium has however been problematic for zinc oxide to date. In particular, it has been difficult to achieve p-doping, which made it impossible to construct semiconductor devices such as transistors or light emitting diodes (LEDs). Such devices require a pn-transition, a junction between the p-doped and the n-doped zones. Thus, in the field of semiconductors, zinc oxide is at present only used for a few special applications.

Hydrogen is always present

There has been a significant improvement in the production of intrinsic zinc oxide during the past few years. Blue LEDs made of zinc oxide have only been presented recently. There are, however, still numerous problems concerning doping. Research scientists at the Ruhr-University in Bochum have been able to identify a significant obstacle in the production of intrinsic zinc oxide. During experiments, which had actually been motivated by an interest in the catalytic properties of ZnO, they were able to show that hydrogen atoms always result in n-doping. They could reversibly dope zinc oxide substrates using hydrogen and then eliminate the hydrogen by heating.

The scientists were thus able to verify theoretical predictions made in 2000. They used a special technique for measurements at diverse temperatures to verify the corresponding charge carrier concentrations. A sufficiently high density of these charge carriers is essential for the proper functioning of electronic devices. Hydrogen impurities are almost impossible to avoid during the production process, thus preventing the targeted p-doping. The electrons released from the H atoms to the ZnO immediately fill the holes caused by the p-doping. High purity, in particular a hydrogen-free environment, is thus a decisive factor for the production of intrinsic zinc oxide.

Controversy is history

The research team was thus also able to resolve a scientific controversy: to date it has often been postulated that the doping problems are caused by imperfections in the zinc oxide crystal lattice, by additional Zn atoms or oxygen defects. The results obtained in Bochum are a basis for the production of higher performance ZnO-based electronic circuits. Currently the scientists are doing intensive research to attain p-doping with an intrinsic, i.e. hydrogen-free, zinc oxide substrate by incorporating appropriate foreign atoms.

Technology actually intended for another purpose

The technology used, a special version of electron spectroscopy, is normally used for another purpose, namely for the investigation of chemical processes on the surfaces of zinc oxides. Such phenomena have been investigated at the Ruhr-University in Bochum for many years within the frameworks of SFB 558 (Focus Research Centre – Metal-Substrate Interactions in Heterogeneous Catalysis) due to the significance of zinc oxide for heterogeneous catalysis, particularly for the synthesis of methanol.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiu et al. Ionization Energies of Shallow Donor States in ZnO Created by Reversible Formation and Depletion of H Interstitials. Physical Review Letters, 2008; 101 (23): 236401 DOI: 10.1103/PhysRevLett.101.236401

Cite This Page:

Ruhr-Universitaet-Bochum. "An Old Dream Fulfilled: Zinc Oxide As Semiconductor." ScienceDaily. ScienceDaily, 8 December 2008. <www.sciencedaily.com/releases/2008/12/081205095950.htm>.
Ruhr-Universitaet-Bochum. (2008, December 8). An Old Dream Fulfilled: Zinc Oxide As Semiconductor. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/12/081205095950.htm
Ruhr-Universitaet-Bochum. "An Old Dream Fulfilled: Zinc Oxide As Semiconductor." ScienceDaily. www.sciencedaily.com/releases/2008/12/081205095950.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins