Featured Research

from universities, journals, and other organizations

'Impossible' Nanoscale Process Succeeds: Molecular Chain Reaction On Metal Surface Offers Potential For Information Storage

Date:
December 12, 2008
Source:
University of Pittsburgh
Summary:
People said it couldn't be done, but researchers have demonstrated a molecular chain reaction on a metal surface, a nanoscale process with sizable potential in areas from nanotechnology to developing information storage technology.

People said it couldn't be done, but researchers from the University of Pittsburgh and the U.S. Department of Energy National Energy Technology Laboratory (NETL) in Pittsburgh demonstrated a molecular chain reaction on a metal surface, a nanoscale process with sizable potential in areas from nanotechnology to developing information storage technology.

Related Articles


The researchers report in the Dec. 12 edition of Science that a single electron caused a self-perpetuating chain reaction that rearranged the bonds in 10 consecutive molecules positioned on a gold surface. As each molecule's original bond was broken by the reaction, the molecule rearranged itself to form a new molecule.

Study coauthor Kenneth Jordan, a Distinguished Professor of Chemistry in Pitt's School of Arts and Sciences and codirector of the University's Center for Simulation and Modeling, said that the ability to initiate molecular chain reactions and self-assembly has potential applications in information storage and in nanolithography, a process used in producing microchips and circuit boards.

Because the demonstrated reaction involved several molecules on a surface, it reframes researchers' understanding of surface-based chain reactions. "The conventional wisdom held that a surface reaction would fizzle soon after the electron was introduced," Jordan said. "Our work, however, shows that reactions on metal surfaces can be sustained over long distances."

Jordan and his colleagues worked with dimethyldisulfide molecules—two CH(3) methyl groups bonded by two adjoining sulfur atoms. The added electron split the bond between the sulfur atoms of one molecule, creating a highly reactive free radical that attacked the sulfur-sulfur bond of the neighboring molecule. The radical split the bond, resulting in a new molecule and a new radical that proceeded to the sulfur-sulfur bond of the next molecule. The process repeated itself through a series of molecules.

Jordan conducted the research with Peter Maksymovych, who received his PhD degree in physical chemistry from Pitt in 2007 and is now at the U.S. Department of Energy Center for Nanophase Materials Sciences; Dan C. Sorescu of NETL; and John T. Yates Jr., a former Pitt Mellon Professor of Chemistry and now at the University of Virginia. Maksymovych and Yates carried out the experiments and Jordan and Sorescu performed the supporting theoretical calculations.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh. "'Impossible' Nanoscale Process Succeeds: Molecular Chain Reaction On Metal Surface Offers Potential For Information Storage." ScienceDaily. ScienceDaily, 12 December 2008. <www.sciencedaily.com/releases/2008/12/081211141932.htm>.
University of Pittsburgh. (2008, December 12). 'Impossible' Nanoscale Process Succeeds: Molecular Chain Reaction On Metal Surface Offers Potential For Information Storage. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2008/12/081211141932.htm
University of Pittsburgh. "'Impossible' Nanoscale Process Succeeds: Molecular Chain Reaction On Metal Surface Offers Potential For Information Storage." ScienceDaily. www.sciencedaily.com/releases/2008/12/081211141932.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins