Featured Research

from universities, journals, and other organizations

Blocking The Spread Of Antibiotic Resistance In Bacteria

Date:
December 23, 2008
Source:
Northwestern University
Summary:
It's as simple as A, T, G, C. Scientists have exploited the Watson-Crick base pairing of DNA to provide a defensive tool that could be used to fight the spread of antibiotic resistance in bacteria. They discovered that a special DNA sequence found in certain bacteria can impede the spread of antibiotic resistance in pathogenic staphylococci. It blocks DNA molecules that move from one cell to another, spreading antibiotic resistance genes.

It's as simple as A, T, G, C. Northwestern University scientists have exploited the Watson-Crick base pairing of DNA to provide a defensive tool that could be used to fight the spread of antibiotic resistance in bacteria -- one of the world's most pressing public health problems.

The resistant nasty pathogens cause thousands of deaths each year in the United States. Particularly virulent is methicillin-resistant Staphylococcus aureus (MRSA), which often cause hospital- and community-acquired infections. The Centers for Disease Control and Prevention calls antibiotic resistance one of its top concerns.

The Northwestern researchers have discovered that a special DNA sequence found in certain bacteria, called a CRISPR locus, can impede the spread of antibiotic resistance in pathogenic staphylococci. It blocks the DNA molecules (plasmids) that move from one cell to another, spreading antibiotic resistance genes. With the plasmids disabled, which the researchers believe is a result of the DNA itself being destroyed, the resistance cannot spread.

The blocking mechanism takes advantage of the fact that a small sequence of this CRISPR locus matches staphylococcal conjugative plasmids, including those that confer antibiotic resistance in MRSA strains.

"If this mechanism could be manipulated in a clinical setting, it would provide a means to limit the spread of antibiotic resistance genes and virulence factors in staph and other bacterial pathogens," said Erik Sontheimer, associate professor of biochemistry, molecular biology and cell biology at the Weinberg College of Arts and Sciences. Sontheimer and postdoctoral fellow Luciano Marraffini carried out the study. Both are authors of the paper.

Generally, antibiotic resistance is spread through a process called horizontal gene transfer, the simple passing of genes from one individual to another. Bacteria are very adept at this, thus the interest among scientists in identifying biological pathways that limit horizontal gene transfer, particularly the process called conjugation, which is most commonly associated with the spread of antibiotic resistance.

Sontheimer and Marraffini studied the CRISPR locus in a clinically isolated strain of Staphylococcus epidermidis, bacteria that cause infections in patients whose immune systems are compromised or who have indwelling catheters.

The two found that the CRISPR locus can block the transfer of plasmids from one S. epidermidis strain to another or between S. epidermidis and S. aureus strains. The researchers' experiments show that the CRISPR locus limits the ability of the S. epidermidis strain to act as a plasmid recipient, essentially denying entry to the genes carrying the resistance.

They also found that "CRISPR interference," as this phenomenon is known, involves the targeting of the incoming plasmid or virus DNA directly. The CRISPR locus gives rise to RNA molecules (chemical cousins of DNA) that apparently recognize the incoming plasmid or virus DNA by the classic base pairing defined by Watson and Crick. This recognition then appears to lead to DNA destruction by unknown mechanisms.

Virtually any DNA molecule could be targeted with CRISPR interference. This blocking mechanism can, in principle, be "programmed" by incorporating into the CRISPR locus any desired A, T, G, C sequence that would match a target. It could potentially be used to fight antibiotic resistance in other pathogenic bacteria, including those that cause anthrax, tuberculosis, cholera and plague.

The programmable nature of CRISPR interference makes it analogous to RNA interference (RNAi), which has received much attention for its ability to block the functions of specific genes in human cells. Unlike RNAi, however, CRISPR interference operates naturally in bacteria.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science, December 19, 2008

Cite This Page:

Northwestern University. "Blocking The Spread Of Antibiotic Resistance In Bacteria." ScienceDaily. ScienceDaily, 23 December 2008. <www.sciencedaily.com/releases/2008/12/081218141730.htm>.
Northwestern University. (2008, December 23). Blocking The Spread Of Antibiotic Resistance In Bacteria. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/12/081218141730.htm
Northwestern University. "Blocking The Spread Of Antibiotic Resistance In Bacteria." ScienceDaily. www.sciencedaily.com/releases/2008/12/081218141730.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Japan's Golden Generation Shows No Sign of Slowing Down

Japan's Golden Generation Shows No Sign of Slowing Down

AFP (Aug. 27, 2014) For many people in the autumn of their lives, walking up stairs is the biggest physical challenge they face. But in Japan, race tracks, hammer or pole vault await competitors at the Kyoto Masters, some of them more than 100 years old. Duration: 02:32 Video provided by AFP
Powered by NewsLook.com
Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins