Featured Research

from universities, journals, and other organizations

Lung Cancer Cells Activate Inflammation To Induce Metastasis

Date:
January 5, 2009
Source:
University of California - San Diego
Summary:
Scientists have identified a protein produced by cancerous lung epithelial cells that enhances metastasis by stimulating the activity of inflammatory cells.

A research team from the University of California, San Diego School of Medicine has identified a protein produced by cancerous lung epithelial cells that enhances metastasis by stimulating the activity of inflammatory cells.

Related Articles


Their findings, to be published in the January 1 issue of the journal Nature, explain how advanced cancer cells usurp components of the host innate immune system to generate an inflammatory microenvironment hospitable for the metastatic spread of lung cancer. The discovery could lead to a therapy to limit metastasis of this most common lethal form of cancer.

The scientists – headed by Michael Karin, Ph.D., UC San Diego Distinguished Professor of Pharmacology and Pathology, who has been investigating the effects of inflammation on cancer development and progression – used a straightforward biochemical approach to identify proteins produced by metastatic cancer cells that are responsible for generation of an inflammatory microenvironment that supports the growth of metastases. Focusing on macrophages, white blood cells that are key players in the immune response to foreign invaders as well as in cancer growth and progression, they screened for factors produced by metastatic cancer cells in mice that could stimulate the activity of this inflammatory cell type.

Among the mouse cell lines screened, a highly metastatic cell line called Lewis lung carcinoma (LLC) showed particularly potent activation of macrophages. Furthermore, macrophage activation was mediated by a secreted protein. Biochemical purification of proteins secreted by LLC cells resulted in identification of an extracellular matrix protein called versican as the major macrophage activator and metastasis enhancing factor. Versican is also found in very low amounts in normal human lung epithelial cells, but is upregulated in human lung cancer, where a very large amount of this protein is found, especially in aggressive tumors.

The scientists found that versican strongly enhances LLC metastatic growth by activating receptors that lead to production of cytokines – signaling proteins that regulate the immune system. One of these receptors, TLR2, and a cytokine, TNFα, were found to be required for LLC metastasis. However, the normal function of TLR2 and TNF is in host defense-innate immunity to microbial infections. According to Karin, these findings are relevant, not just to the mouse model, but also to human lung cancer – the most common cause of cancer-related deaths worldwide. The major cause of lung cancer is tobacco smoking.

"By usurping these elements of the host immune system, versican helps generate an inflammatory environment that spurs the growth and spread of metastatic cancer," said Karin. "If we can find a way to block the production of versican or its binding to TLR2, therapeutic intervention could be used to limit metastasis of lung cancer."

Additional contributors to the paper include Sunhwa Kim, Hiroyuki Takahashi, Pascal Descargues and Sergei Grivennikov, UCSD Department of Pharmacology; Wan-Wan Lin, UCSD Department of Pharmacology and National Taiwan University, Taipei; Youngjun Kim, UCSD Department of Pharmacology and Konkuk University, Chungbuk, Korea; and Jun-Li Luo, UCSD Department of Pharmacology and The Scripps Research Institute, Jupiter, Florida.

The research was supported by grants from the National Institutes of Health, including the National Cancer Institute; the International Human Frontier Science Program Organization (IHFSPO), the California Institute of Regenerative Medicine, the Japanese Respiratory Society, the Life Science Research Foundation and the Crohn's and Colitis Foundation of America. Karin is also supported by a Littlefield-AACR grant in Metastatic Colon Cancer Research and is an American Cancer Society Research Professor.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Lung Cancer Cells Activate Inflammation To Induce Metastasis." ScienceDaily. ScienceDaily, 5 January 2009. <www.sciencedaily.com/releases/2008/12/081231152259.htm>.
University of California - San Diego. (2009, January 5). Lung Cancer Cells Activate Inflammation To Induce Metastasis. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/12/081231152259.htm
University of California - San Diego. "Lung Cancer Cells Activate Inflammation To Induce Metastasis." ScienceDaily. www.sciencedaily.com/releases/2008/12/081231152259.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins