Featured Research

from universities, journals, and other organizations

Longstanding Theory Of Origin Of Species In Oceans Challenged

Date:
January 1, 2009
Source:
National Oceanography Centre/ University of Southampton
Summary:
New evidence uncovered by oceanographers challenges one of the most long-standing theories about how species evolve in the oceans. Researchers propose that it was the climate, and its role in determining the availability of favorable oceanic habitat, that restricted the distribution of the species they studied rather than the presence of physical ocean barriers. In this new view, plankton are freely dispersed throughout the ocean but local conditions determine whether or not the species can 'take hold' and thrive.

New evidence uncovered by oceanographers challenges one of the most long-standing theories about how species evolve in the oceans.
Credit: Image courtesy of National Oceanography Centre/ University of Southampton

New evidence uncovered by oceanographers challenges one of the most long-standing theories about how species evolve in the oceans.

Related Articles


Most scientists believe that allopatric speciation, where different species arise from an ancestral species only after breeding populations have become physically isolated from each other, is the dominant mode of speciation both on land and in the sea. The key to this theory is the existence of some kind of physical barrier that operates to restrict interbreeding (gene flow) between populations so that, given enough time, such populations diverge until they’re considered separate species.

For example, finches that were blown by storms from South America to the Galapagos Islands (and were studied by Charles Darwin) were consequently isolated from their host populations and these isolated breeding colonies evolved separately from each other until they became separate species.

Research by Dr Philip Sexton formerly of the National Oceanography Centre, Southampton (now at the Scripps Institution of Oceanography, San Diego) and Dr Richard Norris (also of Scripps) suggests, however, that this mode of diversification may not be as prevalent for oceanic creatures as it is for land dwellers and somewhat controversially, they assert that the above model of speciation may actually be very rare in the world’s oceans.

The oceans are not as uniform as one would think, but rather are made up of regional water masses that are distinct in their temperature and salinity. It has been theorized that the boundaries between these water masses act as barriers to the movement of plankton, which are organisms that cannot actively swim against currents, but instead drift with them. The existence of these supposed ‘barriers’ has resulted in the general assumption amongst scientists that allopatric speciation is the dominant mode of plankton diversification throughout the oceans. However, the new work published in the journal Geology suggests an altogether different picture.

Sexton and Norris examined the fossils of Truncorotalia truncatulinoides (a species of microscopic plankton and part of the group called ‘foraminifera’) buried in sediment layers beneath the seabed. By looking at different sediment layers from around the world containing these fossils, they were able to track the spread of this species from its ancestral home to its current distribution.

Previous work on this species had indicated that it first appeared about 2.8 million years ago in the Southwest Pacific and took until 2.0 million years ago to spread into other oceans. In line with the popular theory of allopatric speciation, previous thinking had been that the confinement of T. truncatulinoides to the Southwest Pacific for 800,000 years demonstrated that some kind of barrier (caused by the particular pattern of ocean currents) had restricted its range for that entire interval.

However, a detailed examination of sediment layers at two sites in the Atlantic revealed that T. truncatulinoides made a brief appearance in the Atlantic roughly 2.5 million years ago before disappearing again. Crucially, this appearance and subsequent disappearance exactly coincided with a major change in Earth’s climate. Further scrutiny of the sediments revealed that the second Atlantic appearance of this plankton species at 2.0 million years ago was ‘pulsed’; each pulse lasted 19,000 years, corresponding to cyclic ‘oscillations’ in Earth’s solar orbit associated with the Ice Ages.

Sexton and Norris propose that it was the climate, and its role in determining the availability of favourable oceanic habitat, that restricted the distribution of T. truncatulinoides, rather than the presence of physical ocean barriers. In this new view, plankton are freely dispersed throughout the ocean but local conditions determine whether or not the species can ‘take hold’ and thrive. An analogy is that of coconuts, which sometimes wash up on the shore of Britain; cold temperatures prevent coconuts from germinating, but should the climate suddenly shift to a subtropical state, coconut trees might become a common sight lining Britain’s shores.

This new idea that there are few, if any, barriers to the free dispersal of plankton throughout the world’s oceans has been corroborated by genetic research showing that rates of gene flow throughout the oceans are remarkably high. Furthermore, distributions of a number of larger ocean-dwellers such as tuna and molluscs show that, despite having regions of favoured habitat, small numbers of them are regularly found outside of their ‘core range’. These observations suggest that species’ distributions are more controlled by habitat availability rather than by an inability to disperse.

Sexton and Norris’ findings augment a growing body of evidence which support the idea that sympatric speciation, where different species arise from a parent species without the presence of physical barriers, is more common than previously thought. In this mode of speciation, the necessary isolation might instead be achieved through shifts in the timing or depth of reproduction. However, until more research offers a clearer picture of how speciation occurs in the oceans, Sexton and Norris’ contention that sympatric and other similar processes are the “prevalent modes of marine speciation” will, no doubt, remain at odds with prevailing theories.

Sexton, Philip F. & Norris, Richard D. Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer Truncorotalia truncatulinoides. Geology, 36 (11), 899-902 (2008).


Story Source:

The above story is based on materials provided by National Oceanography Centre/ University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

National Oceanography Centre/ University of Southampton. "Longstanding Theory Of Origin Of Species In Oceans Challenged." ScienceDaily. ScienceDaily, 1 January 2009. <www.sciencedaily.com/releases/2008/12/081231175357.htm>.
National Oceanography Centre/ University of Southampton. (2009, January 1). Longstanding Theory Of Origin Of Species In Oceans Challenged. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2008/12/081231175357.htm
National Oceanography Centre/ University of Southampton. "Longstanding Theory Of Origin Of Species In Oceans Challenged." ScienceDaily. www.sciencedaily.com/releases/2008/12/081231175357.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins