Featured Research

from universities, journals, and other organizations

Toxicity Mechanism Identified For Parkinson's Disease

Date:
January 2, 2009
Source:
Emory University
Summary:
Alpha-synuclein is the main component of Lewy bodies, the clumps of aggregated proteins that form in the brains of Parkinson's disease patients. The alpha-synuclein gene is mutated or triplicated in some cases of inherited Parkinson's. A process called chaperone-mediated autophagy (CMA) plays an important role in recycling of specific proteins in brain cells. Alpha-synuclein disrupts a key survival circuit in brain cells by interfering with CMA and the recycling of the protein MEF2D.

Neurologists have observed for decades that Lewy bodies, clumps of aggregated proteins inside cells, appear in the brains of patients with Parkinson's disease and other neurodegenerative diseases.

Related Articles


The presence of Lewy bodies suggests underlying problems in protein recycling and waste disposal, leading to the puzzle: how does disrupting those processes kill brain cells?

One possible answer: by breaking a survival circuit called MEF2D. Researchers at Emory University School of Medicine have discovered that MEF2D is sensitive to the main component of Lewy bodies, a protein called alpha-synuclein.

In cell cultures and animal models of Parkinson's, an accumulation of alpha-synuclein interferes with the cell's recycling of MEF2D, leading to cell death. MEF2D is especially abundant in the brains of people with Parkinson's, the researchers found.

The results are scheduled for publication in the Jan. 2, 2009 issue of Science.

"We've identified what could be an important pathway for controlling cell loss and survival in Parkinson's disease," says senior author Zixu Mao, PhD, associate professor of pharmacology at Emory University School of Medicine.

Further research could identify drugs that could regulate MEF2D, allowing brain cells to survive toxic stresses that impair protein recycling, he suggests.

Most cases of Parkinson's disease are termed sporadic, meaning that there is no obvious genetic cause, but there are inherited forms of Parkinson's. Some of these can be linked to mutations in the gene for alpha-synuclein or triplications of the gene. The mutations and triplications cause the brain to produce either a toxic form of alpha-synuclein or more alpha-synuclein than normal.

"Somehow it's toxic, but alpha-synuclein isn't part of the cell's machinery of death and survival," Mao says.

He and his colleagues began examining how alpha-synuclein influenced MEF2D after a report from another laboratory on disposal of alpha-synuclein by chaperone-mediated autophagy (CMA).

During CMA, certain selected proteins are funneled into lysosomes, compartments of the cell devoted to chewing up discarded proteins. Mao and colleagues found that lysosomes isolated from cells will absorb MEF2D protein, and interfering with CMA chemically causes MEF2D levels to rise.

MEF2D is a transcription factor, a protein that controls whether several genes are turned on or off. Previous studies have shown MEF2D is needed for proper development and survival of brain cells. To function, MEF2D must be able to bind DNA.

The authors found that when CMA is disrupted, most of the accumulated MEF2D can't bind DNA. This may indicate that the protein is improperly folded or otherwise modified.

"Even though there's a lot of it, something is making the MEF2D protein inactive," Mao says.

Mao and his colleagues found that mice that artificially overproduce alpha-synuclein (a model of Parkinson's disease) have elevated levels of apparently inactive MEF2D in their brains. In addition, MEF2D protein levels were higher in the brains of Parkinson's patients than in controls.

Following the influence of alpha-synuclein on MEF2D may be a way to connect the various genetic and environmental risk factors for Parkinson's, even if CMA is not the sole mechanism, Mao says.

"It may be that various stresses impact MEF2D in different ways," he says. "We think this work provides an explanation that ties several important observations together."

The first and second authors of the paper were postdoctoral researchers Qian Yang, MD, PhD, and Hua She, PhD, in Mao's laboratory. Additional authors were Marla Gearing, Emory School of Medicine, Emanuela Colla and Michael Lee, Johns Hopkins University, and John J. Shacka, University of Alabama, Birmingham.

The National Institutes of Health funded the research.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yang Q., et al. Regulation of Neuronal Survival Factor MEF2D by Chaperone-Mediated Autophagy. Science, Jan 2, 2009

Cite This Page:

Emory University. "Toxicity Mechanism Identified For Parkinson's Disease." ScienceDaily. ScienceDaily, 2 January 2009. <www.sciencedaily.com/releases/2009/01/090101172138.htm>.
Emory University. (2009, January 2). Toxicity Mechanism Identified For Parkinson's Disease. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/01/090101172138.htm
Emory University. "Toxicity Mechanism Identified For Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/2009/01/090101172138.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins