Featured Research

from universities, journals, and other organizations

Nearly A Century Later, New Findings Support Warburg Theory Of Cancer

Date:
January 14, 2009
Source:
Boston College
Summary:
Pioneering German biochemist Otto H. Warburg's landmark theory about the origin of cancer has inspired debate and controversy for nearly 80 years. New research into mouse brain tumors has finally detailed the elusive biochemical basis for his theory.

These three-dimensional illustrations show the relationship of cardiolipin abnormalities to electron transport chain activities in the cells of mouse brain tumors studied by researchers from Boston College and Washington University School of Medicine. The graphs show the position of the tumors in relation to their host strain in three enzyme complexes. The team reported in the Journal of Lipid Research new findings that support the Warburg Theory of Cancer. The new research contends that cancer could arise from genomic mutations, environmental insults, or from epigenetic (gene-environmental) abnormalities, any of which could damage cardiolipin and ultimately produce irreversible injury to cellular respiration.
Credit: The Journal of Lipid Research

German scientist Otto H. Warburg's theory on the origin of cancer earned him the Nobel Prize in 1931, but the biochemical basis for his theory remained elusive.

His theory that cancer starts from irreversible injury to cellular respiration eventually fell out of favor amid research pointing to genomic mutations as the cause of uncontrolled cell growth.

Seventy-eight years after Warburg received science's highest honor, researchers from Boston College and Washington University School of Medicine report new evidence in support of the original Warburg Theory of Cancer.

A descendant of German aristocrats, World War I cavalry officer and pioneering biochemist, Warburg first proposed in 1924 that the prime cause of cancer was injury to a cell caused by impairment to a cell's power plant – or energy metabolism – found in its mitochondria.

In contrast to healthy cells, which generate energy by the oxidative breakdown of a simple acid within the mitochondria, tumors and cancer cells generate energy through the non-oxidative breakdown of glucose, a process called glycolysis. Indeed, glycolysis is the biochemical hallmark of most, if not all, types of cancers. Because of this difference between healthy cells and cancer cells, Warburg argued, cancer should be interpreted as a type of mitochondrial disease.

In the years that followed, Warburg's theory inspired controversy and debate as researchers instead found that genetic mutations within cells caused malignant transformation and uncontrolled cell growth. Many researchers argued Warburg's findings really identified the effects, and not the causes, of cancer since no mitochondrial defects could be found that were consistently associated with malignant transformation in cancers.

Boston College biologists and colleagues at Washington University School of Medicine found new evidence to support Warburg's theory by examining mitochondrial lipids in a diverse group of mouse brain tumors, specifically a complex lipid known as cardiolipin (CL). They reported their findings in the December edition of the Journal of Lipid Research.

Abnormalities in cardiolipin can impair mitochondrial function and energy production. Boston College doctoral student Michael Kiebish and Professors Thomas N. Seyfried and Jeffrey Chuang compared the cardiolipin content in normal mouse brain mitochondria with CL content in several types of brain tumors taken from mice. Bioinformatic models were used to compare the lipid characteristics of the normal and the tumor mitochondria samples. Major abnormalities in cardiolipin content or composition were present in all types of tumors and closely associated with significant reductions in energy-generating activities.

The findings were consistent with the pivotal role of cardiolipin in maintaining the structural integrity of a cell's inner mitochondrial membrane, responsible for energy production. The results suggest that cardiolipin abnormalities "can underlie the irreversible respiratory injury in tumors and link mitochondrial lipid defects to the Warburg theory of cancer," according to the co-authors.

These findings can provide insight into new cancer therapies that could exploit the bioenergetic defects of tumor cells without harming normal body cells.

Seyfried, Chuang and Kiebish were joined by co-authors Xianlin Han and Hua Cheng from the Washington University School of Medicine, Department of Internal Medicine, in St. Louis.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kiebish et al. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. The Journal of Lipid Research, 2008; 49 (12): 2545 DOI: 10.1194/jlr.M800319-JLR200

Cite This Page:

Boston College. "Nearly A Century Later, New Findings Support Warburg Theory Of Cancer." ScienceDaily. ScienceDaily, 14 January 2009. <www.sciencedaily.com/releases/2009/01/090112093334.htm>.
Boston College. (2009, January 14). Nearly A Century Later, New Findings Support Warburg Theory Of Cancer. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/01/090112093334.htm
Boston College. "Nearly A Century Later, New Findings Support Warburg Theory Of Cancer." ScienceDaily. www.sciencedaily.com/releases/2009/01/090112093334.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins