Featured Research

from universities, journals, and other organizations

Unconventional Superconductivity Discovered In New Iron Arsenide Compounds

Date:
January 13, 2009
Source:
DOE/Argonne National Laboratory
Summary:
Scientists used inelastic neutron scattering to show that superconductivity in a new family of iron arsenide superconductors cannot be explained by conventional theories. Normally, electrons repel each other because of their similar charge, but, in superconductors, they coordinate with vibrations of the crystal lattice to overcome this repulsion.

Materials engineer Duck Young Chung examines a sample of superconducting crystals before characterizing them in a X-ray diffractometer. The crystals signify the next generation of experiments utilizing neutron scattering to determine unconventional superconductivity.
Credit: Image courtesy of DOE/Argonne National Laboratory

Scientists at U.S. Department of Energy's Argonne National Laboratory used inelastic neutron scattering to show that superconductivity in a new family of iron arsenide superconductors cannot be explained by conventional theories.

"The normal techniques for revealing unconventional superconductivity don't work with these compounds," physicist Ray Osborn said. "Inelastic neutron scattering is so far the only technique that does."

Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper and Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called Cooper pairs, which are able to move through the crystal lattice without resistance when an electric voltage is applied. Even when the voltage is removed, the current continues to flow indefinitely, the most remarkable property of superconductivity, and one that explains the keen interest in their technological potential.

Normally, electrons repel each other because of their similar charge, but, in superconductors, they coordinate with vibrations of the crystal lattice to overcome this repulsion. But scientists don't believe the vibrational mechanism in the iron arsenides is strong enough to make them superconducting. This has led theorists to propose that this superconductivity has an unconventional mechanism, perhaps like high-temperature copper-oxide superconductors. Some iron arsenides are antiferromagnetic, rather than superconducting, so magnetism rather than atomic vibrations might provide the electron glue.

In BCS superconductors, the energy gap between the superconducting and normal electronic states is constant, but in unconventional superconductors the gap varies with the direction the electrons are moving. In some directions, the gap may be zero. The puzzle is that the gap does not seem to vary with direction in the iron arsenides. Theorists have argued that, while the size of the gap shows no directional dependence in these new compounds, the sign of the gap is opposite for different electronic states. The standard techniques to measure the gap, such as photoemission, are not sensitive to this change in sign.

But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan Rosenkranz, led an international collaboration to perform neutron experiments using samples of the new compounds made in Argonne's Materials Science Division, and discovered a magnetic excitation in the superconducting state that can only exist if the energy gap changes sign from one electron orbital to another.

"Our results suggest that the mechanism that makes electrons pair together could be provided by antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives direct evidence that the superconductivity is unconventional."

Inelastic neutron scattering continues to be an important tool in identifying unconventional superconductivity, not only in the iron arsenides, but also in new families of superconductors that may be discovered in the future.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christianson et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature, 2008; 456 (7224): 930 DOI: 10.1038/nature07625

Cite This Page:

DOE/Argonne National Laboratory. "Unconventional Superconductivity Discovered In New Iron Arsenide Compounds." ScienceDaily. ScienceDaily, 13 January 2009. <www.sciencedaily.com/releases/2009/01/090112201222.htm>.
DOE/Argonne National Laboratory. (2009, January 13). Unconventional Superconductivity Discovered In New Iron Arsenide Compounds. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2009/01/090112201222.htm
DOE/Argonne National Laboratory. "Unconventional Superconductivity Discovered In New Iron Arsenide Compounds." ScienceDaily. www.sciencedaily.com/releases/2009/01/090112201222.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins