Featured Research

from universities, journals, and other organizations

Stem Cells Used To Reverse Paralysis In Animals

Date:
January 29, 2009
Source:
Wiley-Blackwell
Summary:
A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that the population of these cells after spinal cord injury was many times greater than comparable cells from healthy animal subjects.

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that the population of these cells after spinal cord injury was many times greater than comparable cells from healthy animal subjects. The results open a new window on spinal cord regenerative strategies.

Related Articles


The transplanted cells were found to proliferate after spinal cord injury and were recruited by the specific injured area. When these cells were transplanted into animals with spinal cord injury, they regenerated ten times faster while in the transplant subject than similar cells derived from healthy control animals.

Spinal cord injury is a major cause of paralysis, and the associated trauma destroys numerous cell types, including the neurons that carry messages between the brain and the rest of the body. In many spinal injuries, the cord is not actually severed, and at least some of the signal-carrying nerve cells remain intact. However, the surviving nerve cells may no longer carry messages because oligodendrocytes, which comprise the insulating sheath of the spinal cord, are lost.

The regenerative mechanism discovered was activated when a lesion formed in the injured area. After a lesion formed in the transplant subject, the stem cells were found to have a more effective ability to differentiate into oligodendrocytes and other cell types needed to restore neuronal function.

Currently, there are no effective therapies to reverse this disabling condition in humans. However, the presence of these stem cells in the adult human spinal cords suggests that stem cell-associated mechanisms might be exploited to repair human spinal cord injuries.

Given the serious social and health problems presented by diseases and accidents that destroy neuronal function, there is an ever-increasing interest in determining whether adult stem cells might be utilized as a basis of regenerative therapies.

“The human body contains the tools to repair damaged spinal cords. Our work clearly demonstrates that we need both adult and embryonic stem cells to understand our body and apply this knowledge in regenerative medicine,” says Miodrag Stojkovic, co-author of the study. “There are mechanisms in our body which need to be studied in more detail since they could be mobilized to cure spinal cord injuries.”


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Moreno-Manzano et al. Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, January 2009; DOI: 10.1002/stem.24

Cite This Page:

Wiley-Blackwell. "Stem Cells Used To Reverse Paralysis In Animals." ScienceDaily. ScienceDaily, 29 January 2009. <www.sciencedaily.com/releases/2009/01/090128160933.htm>.
Wiley-Blackwell. (2009, January 29). Stem Cells Used To Reverse Paralysis In Animals. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2009/01/090128160933.htm
Wiley-Blackwell. "Stem Cells Used To Reverse Paralysis In Animals." ScienceDaily. www.sciencedaily.com/releases/2009/01/090128160933.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins