Featured Research

from universities, journals, and other organizations

'Healthy' Obesity May Be Explained By Newly Identified Protein

Date:
January 31, 2009
Source:
UT Southwestern Medical Center
Summary:
Mice whose fat cells were allowed to grow larger than fat cells in normal mice developed "healthy" obesity when fed a high-fat diet, researchers found in a new study.

Mice whose fat cells were allowed to grow larger than fat cells in normal mice developed “healthy” obesity when fed a high-fat diet, researchers at

UT Southwestern Medical Center found in a new study.

The fat but healthy mice lacked a protein called collagen VI, which normally surrounds fat cells and limits how large they can grow, like a cage around a water balloon. The findings appear online and in a future edition of Molecular and Cellular Biology.

“The mice lacking collagen VI fared much better metabolically than their counterparts that retained this particular collagen,” said Dr. Philipp Scherer, director of the Touchstone Center for Diabetes Research at UT Southwestern and the study’s senior author. “The mice without collagen VI don’t develop inflammation or insulin resistance. They still get obese, but it’s a ‘healthy’ obesity.”

When people take in more calories than needed, excess calories are stored in adipose or fatty tissue. The fat cells are embedded in and secrete substances into an extracellular matrix, a type of connective tissue that provides support to fat tissue, like scaffolding. Collagen VI is one component of the extracellular matrix.Too much of this connective tissue prevents individual cells from expanding and can lead to fibrosis and eventually inflammation.

Inflammation is thought to be an underlying cause of metabolic disorders in humans, said Dr. Scherer. Large fat cells are often considered a bad omen, he said, because they typically lead to increased cell death and systemic insulin resistance. Under normal circumstances, fat cells continue to grow until they reach a point where the extracellular matrix they’ve built around themselves is so strong that it’s no longer flexible.

“In this particular case, however, the large fat cells are not as inflamed as they would normally be,” Dr. Scherer said. “Fat cells that lack collagen VI can grow to a huge size without becoming inflamed, suggesting that collagen VI directly affects the ability of fat cells to expand.”

Dr. Scherer said the current finding is clinically relevant and probably will translate well from the mice to humans. “Our study highlights the fact that collagen VI, and possibly other extracellular matrix constituents, are extremely important in modulating fat-cell physiology,” he said.

The next step is to determine precisely how collagen VI functions in the body.

“We need to get a better grip on targets that may allow us to interfere in this process. Unfortunately collagen VI can’t be knocked out in humans, but we may be able to manipulate it,” Dr. Scherer said.

Other UT Southwestern researchers involved in the study were Dr. Zhao Wang, postdoctoral researcher in internal medicine, as well as volunteer faculty members Drs. Nicola Abate and Manisha Chandalia, who are now on staff at the UT Medical Branch at Galveston. Scientists from the Albert Einstein College of Medicine, Merck Research Laboratories and the University of Padua in Italy also participated.

The work was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "'Healthy' Obesity May Be Explained By Newly Identified Protein." ScienceDaily. ScienceDaily, 31 January 2009. <www.sciencedaily.com/releases/2009/01/090129122529.htm>.
UT Southwestern Medical Center. (2009, January 31). 'Healthy' Obesity May Be Explained By Newly Identified Protein. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2009/01/090129122529.htm
UT Southwestern Medical Center. "'Healthy' Obesity May Be Explained By Newly Identified Protein." ScienceDaily. www.sciencedaily.com/releases/2009/01/090129122529.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins