Featured Research

from universities, journals, and other organizations

Nanoparticles Double Their Chances Of Getting Into Sticky Situations, And Boost Potential Uses

Date:
February 25, 2009
Source:
University of Warwick
Summary:
Researchers have found that tiny nanoparticles could be twice as likely to stick to the interface of two non mixing liquids than previously believed. This opens up a range of new possibilities for the uses of nanoparticles in living cells, polymer composites, and high-tech foams, gels, and paints. The researchers are also working on ways of further artificially enhancing this new found sticking power.

Stefan Bon (left) David Cheung right with image from their paper.
Credit: Image courtesy of University of Warwick

Chemistry researchers at the University of Warwick have found that tiny nanoparticles could be twice as likely to stick to the interface of two non mixing liquids than previously believed. This opens up a range of new possibilities for the uses of nanoparticles in living cells, polymer composites, and high-tech foams, gels, and paints. The researchers are also working on ways of further artificially enhancing this new found sticking power.

University of Warwick researchers reviewed molecular simulations of the interaction between a non-charged nanoparticle and an "ideal" liquid-liquid interface. They were surprised to find that very small nanoparticles (of around 1 to 2 nanometres) varied considerably in their simulated ability to stick to such interfaces from what was expected in the standard model.

The researchers found that it took up to 50 percent more energy to dislodge the particles from the liquid-liquid interface for the smallest particle sizes. However as the radius of the particles increased this deviation from the standard model gradually faded out.

The researchers, Dr ir Stefan A. F. Bon and Dr David L. Cheung, believe that previous models failed to take into account the action of "capillary waves" in their depiction of the nanoparticles behaviour at the liquid to liquid interfaces.

Dr ir Stefan A. F. Bon said, " This new understanding on the nano-scale gives us much more flexibility in the design of everything from high-tech composite materials, to the use of quantum dots, cell biochemistry, and the manufacture of new "armored" polymer paint particles."

The researchers are now working on ways to build on this newly found natural stickiness of nanoparticles by designing polymer nanoparticles with opposing hydrophobic and hydrophilic surfaces that will bind even more strongly at oil/water liquid interfaces.

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC)


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cheung et al. Interaction of Nanoparticles with Ideal Liquid-Liquid Interfaces. Physical Review Letters, 2009; 102 (6): 066103 DOI: 10.1103/PhysRevLett.102.066103

Cite This Page:

University of Warwick. "Nanoparticles Double Their Chances Of Getting Into Sticky Situations, And Boost Potential Uses." ScienceDaily. ScienceDaily, 25 February 2009. <www.sciencedaily.com/releases/2009/02/090216092941.htm>.
University of Warwick. (2009, February 25). Nanoparticles Double Their Chances Of Getting Into Sticky Situations, And Boost Potential Uses. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/02/090216092941.htm
University of Warwick. "Nanoparticles Double Their Chances Of Getting Into Sticky Situations, And Boost Potential Uses." ScienceDaily. www.sciencedaily.com/releases/2009/02/090216092941.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins