Featured Research

from universities, journals, and other organizations

From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine

Date:
March 2, 2009
Source:
Stanford University Medical Center
Summary:
By now, most people have read stories about how to "grow your own organs" using stem cells is just a breakthrough away. Despite the hype, this breakthrough has been elusive. A new report brings bioengineered organs a step closer. Specifically, the advance clears two major hurdles, namely a matrix on which stem cells can form a three-dimensional organ and transplant rejection.

Computer-rendered image of human organs. New research suggests that bioengineered replacement organs may be closer thanks to a newly developed matrix on which stem cells can form a three-dimensional organ.
Credit: iStockphoto/Sebastian Kaulitzki

Stem cells can thrive in segments of well-vascularized tissue temporarily removed from laboratory animals, say researchers at the Stanford University School of Medicine. Once the cells have nestled into the tissue's nooks and crannies, the so-called "bioscaffold" can then be seamlessly reconnected to the animal's circulatory system.

Related Articles


The new technique neatly sidesteps a fundamental stumbling block in tissue engineering: the inability to generate solid organs from stem cells in the absence of a reliable supply of blood to the interior of the developing structure.

"Efforts to use tissue engineering to generate whole organs have largely failed," said Geoffrey Gurtner, MD, associate professor of surgery, "primarily due to the lack of available blood vessels. Now we've essentially hijacked an existing structure to overcome this problem." The key, the researchers discovered, is to keep the tissue adequately supplied with oxygen and nutrients while outside of the body.

In the near future, the researchers believe that the stem cells in the tissue could be induced to become an internal, living factory of healthy, specialized cells churning out proteins missing in people with conditions such as hemophilia or diabetes. In the long run, they hope to encourage the cells to become entire transplantable organs such as livers or pancreases.

Gurtner, who is also a member of Stanford's Cancer Center, is the senior author of the study, which is featured in the March issue of the FASEB Journal.

The technique devised by Gurtner and his colleagues does more than provide the versatile stem cells with a readily accessible blood supply and a pre-formed cellular framework within which to begin differentiating. It also eliminates the chance of rejection or complications caused by the use of artificial or donor scaffolding materials by utilizing the animal's own tissue.

The researchers capitalized on a portion of the circulatory system shared by animals and humans called microcirculatory beds. To understand what they are, spread the fingers of each of your hands apart and then touch your fingertips together. One wrist represents the inflow of blood, and the other, the outflow. The fingers are the tiny capillaries that supply oxygen and nutrients to the surrounding tissue wrapping itself invisibly around your hands.

In many cases these beds create a flap of expendable tissue that can be easily removed. (With your fingertips still touching, bring your elbows together. Now imagine lopping off your hands midway down the forearm. Your fingers and wrists now represent a free microcirculatory bed.)

Gurtner and his colleagues removed microcirculatory beds about the size of a half-dollar coin from the groin of laboratory rats and attached the ends of the two main blood vessels to a modified piece of equipment called a bioreactor designed to keep livers and kidneys healthy outside the body. The modified bioreactor pumps an oxygenated soup of nutrients into one vessel and recovers it from the other; Gurtner referred to it as a "kind of life support, or cardiopulmonary bypass, machine for tissue."

The scientists showed that, once the appropriate blood pressure and nutrient balance was achieved, the bioreactor could keep the tissue healthy enough for reimplantation into a second, genetically identical animal for up to 24 hours. In many cases, the tissue became nearly indistinguishable from surrounding skin within 28 days of transplant, although the success rate of the procedure decreased as time spent on the bioreactor increased. In contrast, control tissue not connected to the bioreactor after removal died within six hours of transplantation.

The team then used the bioreactor to pump multipotent stem cells from a variety of sources, including bone marrow and fat tissue, through the tissue. Unlike embryonic stem cells, which can become any type of cell in the body, multipotent cells are more restricted in their potential. The researchers found that the cells could migrate out of the vascular spaces and into the surrounding tissue. Once there, they set up shop and began to form colonies. Unlike stem cells injected directly into the tissue, the stem cells that had been seeded into the tissue continued to thrive even eight weeks after reimplantation.

"This is an incredible opportunity to bulk-deliver cells that don't just die," said Gurtner. "Conceivably, we could use this technique at least to supply the synthetic function of an organ by stimulating the cells to form insulin-producing pancreas cells or albumin-producing liver cells."

Members of Gurtner's team are now trying to use the technique to deliver Factor VIII and Factor IX — crucial blood-clotting components that are missing in people with hemophilia. The researchers concede, however, that much remains to be done before the technique could be used to generate whole organs. Indeed, Gurtner readily agrees that other methods might be developed that could be more effective. But for now, they've overcome a major hurdle in tissue engineering.

"Eventually science will find a way to fabricate an organ in all its complexity," said Gurtner. "But in the short term we need to find more options for patients who are dying while waiting for transplants."

Stanford collaborators on the research include postdoctoral scholars Edward Chang, MD, Robert Bonillas, MD, Eric Chang, MD, and Denise Chan, PhD; and medical students Samyra El-ftesi and Ivan Vial. The research was supported by grants from the National Institutes of Health and the National Institute of Biomedical Imaging and Bioengineering.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chang et al. Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. The FASEB Journal, 2009; 23 (3): 906 DOI: 10.1096/fj.08-114868

Cite This Page:

Stanford University Medical Center. "From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine." ScienceDaily. ScienceDaily, 2 March 2009. <www.sciencedaily.com/releases/2009/02/090226110657.htm>.
Stanford University Medical Center. (2009, March 2). From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/02/090226110657.htm
Stanford University Medical Center. "From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine." ScienceDaily. www.sciencedaily.com/releases/2009/02/090226110657.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins