Featured Research

from universities, journals, and other organizations

New Potential Therapeutic Target Discovered For Genetic Disorder -- Barth Syndrome

Date:
March 12, 2009
Source:
NYU Langone Medical Center / New York University School of Medicine
Summary:
Researchers may have discovered a new targeted intervention for Barth Syndrome. The new study shows the benefits of targeted intervention with an iPLA2-VIA inhibitor that prevents a major symptom of the disease- cardiolipin deficiency.

Researchers at NYU Langone Medical Center may have discovered a new targeted intervention for Barth Syndrome (BTHS). BTHS, a sometimes fatal disease, is a serious genetic disorder occurring predominantly in males that leads to infection or heart failure in childhood.

The new study was recently published in the Proceedings of the National Academy of Sciences, shows the benefits of targeted intervention with an iPLA2-VIA inhibitor that prevents a major symptom of the disease- cardiolipin deficiency.

"Our research has established a causal role of cardiolipin deficiency in the pathogenesis of Barth syndrome and identified an important enzyme in cardiolipin degradation called iPLA2-VIA as a potential target for therapeutic intervention of the disease," said Mindong Ren, Ph.D., lead investigator of the study and assistant professor of cell biology at NYU Langone Medical Center.

BTHS syndrome is an X-linked genetic cardioskeletal muscle disease resulting in muscle weakness and fatigue in patients. The debilitating disorder is caused by a mutation in the genetic coding of tafazzin, an enzyme of the cardiolipin pathway. Cardiolipin is an essential lipid in the inner membrane of mitochondria responsible for normal cell structure and energy production. BTHS patients exhibit defects in cardiolipin metabolism which help fight infections. The various symptoms of BTHS, in addition to cardiolipin deficiency, include cardiomyopathy (weakness in heart muscle), neutropenia (a reduction in neutrophils or white blood cells that fight bacterial infections), muscle weakness & fatigue (caused by cellular deficiency), growth delay, and increase of organic acids in urine.

In a previous study, NYU researchers documented the characteristics of a tafazzin-deficiency in a Drosophila (fruit fly) model of the disease, showing low and abnormal cardiolipin concentration, abnormal mitochondria, and poor motor function. In this new study researchers documented that tafazzin or cardiolipin deficiency in Drosophila disrupts the final stage of spermatogenesis causing male sterility. Using this fly model, the study showed that this trait of cardiolipin deficiency can be genetically suppressed by inactivating calcium-independent phospholipase A2, which prevents the degradation of cardiolipin. This method keeps cardiolipin levels normal. Researchers were also able to show that treatment of BTHS patients lymphoblasts within a tissue culture with the iPLA2-VIA inhibitor BEL partially restored the tissue cultures cardiolipin homeostasis.

"Taken together, our two findings establish a causal role of cardiolipin deficiency in the pathogenesis of Barth syndrome and identify iPLA2-VIA as a very important enzyme," said Michael Schlame, M.D., associate professor of anesthesiology and cell biology, NYU Langone Medical Center. "This is good news for patients since this enzyme is now a potential target for therapeutic intervention."

According to researchers, although this has not been tested in humans, the successful restoration of these mutated cells with BEL shows promise for continued BTHS research, patients and their families. There are no treatments for Barth syndrome at this time.

This study was funded in part by grants from the Barth Syndrome Foundation, the United Mitochondrial Disease Foundation, and NIH.


Story Source:

The above story is based on materials provided by NYU Langone Medical Center / New York University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Malhotra et al. Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome. Proceedings of the National Academy of Sciences, 2009; 106 (7): 2337 DOI: 10.1073/pnas.0811224106

Cite This Page:

NYU Langone Medical Center / New York University School of Medicine. "New Potential Therapeutic Target Discovered For Genetic Disorder -- Barth Syndrome." ScienceDaily. ScienceDaily, 12 March 2009. <www.sciencedaily.com/releases/2009/03/090302183258.htm>.
NYU Langone Medical Center / New York University School of Medicine. (2009, March 12). New Potential Therapeutic Target Discovered For Genetic Disorder -- Barth Syndrome. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/03/090302183258.htm
NYU Langone Medical Center / New York University School of Medicine. "New Potential Therapeutic Target Discovered For Genetic Disorder -- Barth Syndrome." ScienceDaily. www.sciencedaily.com/releases/2009/03/090302183258.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins