Featured Research

from universities, journals, and other organizations

Mechanism Discovered For Wind Detection In Fruit Flies' Antennae

Date:
March 16, 2009
Source:
California Institute of Technology
Summary:
Tiny, lightweight fruit flies need to know when it's windy out so they can steady themselves and avoid being knocked off their feet or blown off course. But how do they figure out that it's time to hunker down? Scientists have discovered that the flies have evolved a specialized population of neurons in their antennae that let them know not only when the wind is blowing, but also the direction from which it is coming.

Fruit flies in the wind.
Credit: Image courtesy of California Institute of Technology

Tiny, lightweight fruit flies need to know when it's windy out so they can steady themselves and avoid being knocked off their feet or blown off course. But how do they figure out that it's time to hunker down?

According to a team led by California Institute of Technology (Caltech) scientists reporting in the journal Nature, the flies have evolved a specialized population of neurons in their antennae that let them know not only when the wind is blowing, but also the direction from which it is coming.

The behavior of fruit flies in the face of a stiff breeze is remarkable in and of itself, notes David J. Anderson, the Roger W. Sperry Professor of Biology at Caltech, and a Howard Hughes Medical Institute (HHMI) Investigator. "We discovered that you can stop a fly dead in its tracks by blowing a gentle stream of air over it," he explains, adding that the flies' immobility is so complete, you could pick one up with a pair of chopsticks as long as a steady stream of wind was passing over the insect. Once the wind stops blowing, however, the flies immediately start walking around again.

But the response is also of interest from a scientific point of view, because it represents a fairly simple, innate defensive response that scientists can begin to tease apart in order to understand just how such behaviors are programmed in our genes. "It's more than just stupid pet tricks with fruit flies," Anderson says.

"We quickly realized that it would be interesting to ask just how the wind acts on the flies to make them stop walking. How do they sense the wind? How do they transfer that message to their brain so they know to stop moving while the wind is blowing?"

As it turns out, fruit flies are unusual in how they sense wind. Other insects have sensory hairs that stand up from the cuticle--or outer body wall--and, when blown about by a passing wind, trigger a neural response. The fruit flies, on the other hand, use their antennae to detect a breeze and its general direction, based on how the antenna moves in the breeze.

"This posed a bit of a puzzle for us," Anderson explains. "It's been long assumed that the main function of the neurons in the antennae was hearing."

And that is at least one of the antennae's functions. The flies' antennae detect nearby sounds--like the male's courtship song--that cause vibrations in the air, a bit like ripples in a pond after a rock has been thrown. Those vibrations twist the antennae slightly, exciting the neurons within.

Wind, on the other hand, is not a regularly oscillating wave; instead, it's a steady stream of air particles moving past the fly from various directions. The antennae move in the wind, but they don't twist rapidly back and forth as they do in response to sound.

Says Anderson: "What we wanted to understand was, how can flies tell the difference between sound and wind using the same sensory organ?"

There were two possible answers to this question. The first was that a fly's antennae are equipped with a single, versatile type of neuron that changes its firing pattern depending on whether it's detecting sound or wind, and that the differences in that firing pattern are picked up and somehow decoded by the fly's brain.

The other possibility, says Anderson, was that a fly's antennae contain two distinctly different populations of neurons--one that responds to oscillating air to detect sound, and another that responds to flowing air particles to detect wind.

The right answer? Number two. By selectively knocking out subsets of neurons, Anderson's graduate student Suzuko Yorozu was able to show that Johnston's organ--an area in a fruit fly antenna where sound detection is known to occur--does indeed contain at least two entirely separate groups of neurons. She also showed that each neuron type detects only one type of stimulus (sound for one; wind for the other), and that each sends its message to a distinct and separate area of the brain.

"The sound-sensitive neurons are preferentially activated by small movements of the antenna that are oscillatory in nature, firing only when the antenna twists, and turn off quickly," says Anderson. "The neurons that respond to wind, on the other hand, turn on when the antenna is pushed by air flow, and they stay on until the wind stops blowing." In other words, says Yorozu, "the intrinsic properties of these neurons are very different."

The end result of these separate pathways is that the flies exhibit absolutely distinct types of behaviors, with the sound-detecting neurons leading to behaviors like copulation (in the case of the courtship song), while the wind-detecting neurons prompt flies to come to a dead stop for safety's sake when air is blowing past with any real speed.

In addition to Anderson and Yorozu, other authors on the Nature paper include Caltech and HHMI postdoctoral scholar Allan Wong, Caltech visiting associate Brian Fischer, Caltech postdoctoral scholar Heiko Dankert, Maurice Kernan from SUNY Stony Brook, Azusa Kamikouchi from the University of Tokyo and the University of Cologne, and Kei Ito from the University of Cologne.

This work was supported by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yorozu et al. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature, 2009; 458 (7235): 201 DOI: 10.1038/nature07843

Cite This Page:

California Institute of Technology. "Mechanism Discovered For Wind Detection In Fruit Flies' Antennae." ScienceDaily. ScienceDaily, 16 March 2009. <www.sciencedaily.com/releases/2009/03/090312140858.htm>.
California Institute of Technology. (2009, March 16). Mechanism Discovered For Wind Detection In Fruit Flies' Antennae. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/03/090312140858.htm
California Institute of Technology. "Mechanism Discovered For Wind Detection In Fruit Flies' Antennae." ScienceDaily. www.sciencedaily.com/releases/2009/03/090312140858.htm (accessed October 23, 2014).

Share This



More Earth & Climate News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Trick-or-Treating Banned Because of Polar Bears

Trick-or-Treating Banned Because of Polar Bears

Buzz60 (Oct. 21, 2014) — Mother Nature is pulling a trick on the kids of Arviat, Canada. As Mara Montalbano (@maramontalbano) tells us, the effects of global warming caused the town to ban trick-or-treating this Halloween. Video provided by Buzz60
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins