Featured Research

from universities, journals, and other organizations

Engineers Crack Ceramics Production Obstacle

Date:
March 20, 2009
Source:
University of Leicester
Summary:
New computer-aided ‘predictive technology’ has potential to save industry time, money and reduce wastage.

Engineers at the University of Leicester have invented a new technique in the manufacture of ceramics that has the potential to save the industry time and costs while reducing wastage.

Related Articles


The novel method takes away the traditional ‘trial and error’ approach to manufacture of ceramics and instead applied new computer modelling techniques to the manufacturing process.

Researchers at the University of Leicester, led by Professor Jingzhe Pan of the Department of Engineering, focused on a critical step in the manufacture of ceramics known as ‘sintering’.

Professor Pan explained: “Ceramics constitute vital domestic, industrial and building products, and are perhaps indispensable in our modern society. However, manufacturing advanced ceramics even in this era of ‘precision’ techniques is still very much a ‘trial and error’ process.

“Ceramics are produced from firstly compacting powders into a solid, and then firing the powder compacts in a process called ‘sintering’. During this, powders are heated to a temperature where they adhere to each other. At this stage, materials are essentially re-packed more closely, such that overall volume decreases (shrinks), whilst the density increases. Ceramics are intrinsically brittle making post-production alterations in dimensions very difficult. Failure to accurately estimate the final dimensions of ceramic parts, therefore lead to a waste of materials, time and money. “

Professor Pan’s technique helps to minimise errors during the sintering process. He said: “By predicting change in dimension during sintering is challenging, requiring extensive data on the material in question. Obtaining the required physical data has been difficult and expensive.

“Our method simply uses density measurements of different ceramics during sintering in our computer software that can predict changes in dimensions, even before production begins.

“This method does not depend on the physical properties of any one ceramic material - it simply uses densification data from a small sample of the material and extrapolates the data, such that it can be applied to larger quantities used in manufacturing. It can thus, be applied to a wide range of ceramics”.

Professor Pan, who has been investigating this process for the last 10 years, added that the ceramic industry is aware of the enormous potential of computer and mathematical modelling, and of the benefits of shifting emphasis from historical data to a more predictive approach. However, several challenges need to be overcome before this method reaches daily application in industry.

For example, the system will need to be converted into a more ‘user-friendly’ format for industrial use. Further, the technique will have to be demonstrated in a range of industrial products.

Since inventing this technique, which for the first time, shows real potential of revolutionising the ceramic industry, Professor Pan and his group have continued to explore various properties of ceramic materials. They are currently investigating properties of multi-layered ceramics (commonly used in fuel cells) and industrial (ceramic) coating.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Engineers Crack Ceramics Production Obstacle." ScienceDaily. ScienceDaily, 20 March 2009. <www.sciencedaily.com/releases/2009/03/090313080304.htm>.
University of Leicester. (2009, March 20). Engineers Crack Ceramics Production Obstacle. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/03/090313080304.htm
University of Leicester. "Engineers Crack Ceramics Production Obstacle." ScienceDaily. www.sciencedaily.com/releases/2009/03/090313080304.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins