Featured Research

from universities, journals, and other organizations

Catching The Common Cold Virus Genome

Date:
March 17, 2009
Source:
Brigham Young University
Summary:
A new study on the virus behind nearly half of all cold infections explains how and where evolution occurs in the rhinovirus genome and what this means for possible vaccines.

The sneeze. A BYU research team published a study on the genome of the rhinovirus, which causes about half of common colds.
Credit: Image courtesy of Brigham Young University

A new study by Brigham Young University researchers on the virus behind nearly half of all cold infections explains how and where evolution occurs in the rhinovirus genome and what this means for possible vaccines.

Related Articles


"There are a lot of different approaches to treating the cold, none of which seem to be effective," said Keith Crandall, professor of biology and co-author of the study. "This is partly because we haven't spent a lot of time studying the virus and its history to see how it's responding to the human immune system and drugs."

The BYU team studied genomic sequences available online and used computer algorithms to estimate how the rhinovirus is related to other viruses.

According to Nicole Lewis-Rogers, a postdoctoral fellow in the Biology Department and lead author on the study, the rhinovirus is similar to the polio virus, whose vaccine was announced in 1955. But while the polio virus has just three subspecies, the rhinovirus has more than 100 subspecies, which continually evolve.

"These viruses could be under the same constraints and yet change differently," Lewis-Rogers said. "That's why it is so hard to create a vaccine."

Through a computer program developed at BYU, Lewis-Rogers' team was able to identify the parts of the virus genome that enable resistance to drugs and the human immune system.

The immune system does a good job of recognizing viral contaminants and getting rid of them, as do new drugs, but the rhinovirus has responded to these defenses by changing its genome so that it is not so easily recognized.

"The virus is evolving solutions against the immune system and drugs," Crandall said. "The more we can learn about how the virus evolves solutions, the better we can rid the body of these infections."

Understanding where change occurs in the virus genome will help virologists who work to design drugs that target the rhinovirus.

"If you've got 10,000 bits of information, this narrows it down to a handful," Lewis-Rogers said. "Here is where you can start looking."

Lewis-Rogers and Crandall hope scientists will use these insights to build better drugs to combat the virus in the most effective way.

The study is reported in the April issue of the journal Molecular Biology and Evolution. BYU undergraduate Matthew Bendall is also a co-author on the study, which was funded by the USDA. Bendall will next pursue a master's in bioinformatics at BYU.


Story Source:

The above story is based on materials provided by Brigham Young University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicole Lewis-Rogers, Matthew L. Bendall, and Keith A. Crandall. Phylogenetic Relationships and Molecular Adaptation Dynamics of Human Rhinoviruses. Molecular Biology and Evolution, 2009; DOI: 10.1093/molbev/msp009

Cite This Page:

Brigham Young University. "Catching The Common Cold Virus Genome." ScienceDaily. ScienceDaily, 17 March 2009. <www.sciencedaily.com/releases/2009/03/090316142438.htm>.
Brigham Young University. (2009, March 17). Catching The Common Cold Virus Genome. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/03/090316142438.htm
Brigham Young University. "Catching The Common Cold Virus Genome." ScienceDaily. www.sciencedaily.com/releases/2009/03/090316142438.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins