Featured Research

from universities, journals, and other organizations

Mighty Diatoms: Global Climate Feedback From Microscopic Algae

Date:
March 24, 2009
Source:
Michigan State University
Summary:
Tiny creatures at the bottom of the food chain called diatoms suck up nearly a quarter of the atmosphere's carbon dioxide, yet research suggests they could become less able to "sequester" that greenhouse gas as the climate warms. The microscopic algae are a major component of plankton living in puddles, lakes and oceans.

Diatoms in a variety of shapes.
Credit: iStockphoto/Nancy Nehring

Tiny creatures at the bottom of the food chain called diatoms suck up nearly a quarter of the atmosphere’s carbon dioxide, yet research by Michigan State University scientists suggests they could become less able to “sequester” that greenhouse gas as the climate warms. The microscopic algae are a major component of plankton living in puddles, lakes and oceans.

Zoology professor Elena Litchman, with MSU colleague Christopher Klausmeier and Kohei Yoshiyama of the University of Tokyo, explored how nutrient limitation affects the evolution of the size of diatoms in different environments. Their findings underscore potential consequences for aquatic food webs and climate shifts.

“They are globally important since they ‘fix’ a significant amount of carbon,” Litchman explained of the single-cell diatoms. “When they die in the ocean, they sink to the bottom carrying the carbon from the atmosphere with them. They perform a tremendous service to the environment.”

Carbon dioxide buildup, due to a significant extent to burning fossil fuels and deforestation, is identified as the leading cause of climate change. Carbon dioxide is at its highest level in at least 650,000 years and rising, according to The National Academies, and only half of the CO2 produced now can be absorbed by plant life.

Litchman analyzed data from lakes and oceans across the United States, Europe and Asia and found a striking difference between the size of diatoms in freshwater and in marine environments. In oceans, diatoms grow to be 10 times larger on average than in freshwater and have a wider range of sizes.

One factor that affects growth is nutrient availability, Litchman said. The research shows that limitations by nitrogen and phosphorus exert different selective pressures on cell size. The availability of these nutrients depends on the mixing of water from greater depths. Using a mathematical model, Litchman and her colleagues found that when those nutrients are constantly limited and mixing is shallow, smaller diatoms thrive.

But when nitrate comes and goes, as often happens in roiling oceans, diatoms evolve larger to store nutrients for lean times. Deep mixing also benefits large diatoms. Depending on how intermittent the nitrate supply is and how deep the ocean mixes, there can be a wide range of diatom sizes. Size matters for the creatures that eat them and also for carbon sequestration, as large diatoms are more likely to sink when they die.

Changing climate could alter the mixing depths and delivery of nutrients to diatoms and their subsequent sizes with a cascade of consequences, Litchman said.

“On a global scale, increased ocean temperatures could make the ocean more stratified,” she explained. “This would cause less mixing and create stronger nutrient limitation and less frequent nutrient pulses. A change like this would select for different sizes of diatoms. If smaller sized diatoms dominate, then carbon sequestration becomes less efficient and there may be more CO2 remaining in the atmosphere, which would exacerbate global warming.”

Litchman and colleagues’ research was supported by the National Science Foundation and the J.S. McDonnell Foundation. Their findings were published Feb. 24 in the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Litchman, C. A. Klausmeier, and K. Yoshiyama. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences, 2009; 106 (8): 2665 DOI: 10.1073/pnas.0810891106

Cite This Page:

Michigan State University. "Mighty Diatoms: Global Climate Feedback From Microscopic Algae." ScienceDaily. ScienceDaily, 24 March 2009. <www.sciencedaily.com/releases/2009/03/090317125217.htm>.
Michigan State University. (2009, March 24). Mighty Diatoms: Global Climate Feedback From Microscopic Algae. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/03/090317125217.htm
Michigan State University. "Mighty Diatoms: Global Climate Feedback From Microscopic Algae." ScienceDaily. www.sciencedaily.com/releases/2009/03/090317125217.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Raw: Prime Minister at Japan Landslide Site

Raw: Prime Minister at Japan Landslide Site

AP (Aug. 25, 2014) Japanese Prime Minister Shinzo Abe visited Hiroshima on Monday as rescuers expanded their search for dozens still missing from landslides around the western Japanese city that killed at least 50 people. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins