Featured Research

from universities, journals, and other organizations

Magnetic Nano-'shepherds' Organize Cells

Date:
April 9, 2009
Source:
Duke University
Summary:
The power of magnetism may address a major problem facing bioengineers as they try to create new tissue -- getting human cells to not only form structures, but to stimulate the growth of blood vessels to nourish that growth.

The process of forming cell chains using magnetic particles.
Credit: Duke University/Case Western Reserve University/University of Mass. Amherst

The power of magnetism may address a major problem facing bioengineers as they try to create new tissue -- getting human cells to not only form structures, but to stimulate the growth of blood vessels to nourish that growth.

A multidisciplinary team of investigators from Duke University, Case Western Reserve University and the University of Massachusetts, Amherst created an environment where magnetic particles suspended within a specialized solution act like molecular sheep dogs. In response to external magnetic fields, the shepherds nudge free-floating human cells to form chains which could potentially be integrated into approaches for creating human tissues and organs.

The cells not only naturally adhere to each other upon contact, the researchers said, but the aligned cellular configurations may promote or accelerate the creation and growth of tiny blood vessels.

"We have developed an exciting way of using magnetism to manipulate human cells floating freely in a solution containing magnetic nanoparticles" said Randall Erb, fourth-year graduate student in the laboratory of Benjamin Yellen, assistant professor of Mechanical Engineering and Materials Science, at Duke University's Pratt School of Engineering. "This new cell assembly process holds much promise for tissue engineering research and offers a novel way to organize cells in an inexpensive, easily accessible way."

Melissa Krebs, third-year biomedical engineering graduate student at Case Western and Erb's sister, co-authored a paper appearing online in advance of the May publication of Nano Letters, a journal published by the American Chemical Society.

"The cells have receptors on their surfaces that have an affinity for other cells," Krebs said. "They become sticky and attach to each other. When endothelial cells get together in a linear fashion, as they did in our experiments, it may help them to organize into tiny tubules."

The iron-containing nanoparticles used by the researchers are suspended within a liquid known as a ferrofluid. One of the unique properties of these ferrofluids is that they become highly magnetized in the presence of external magnetism, which allows researchers to readily manipulate the chain formation by altering the strength of the magnetic field.

At the end of the process, the nanoparticles are simply washed away, leaving a linear chain of cells. That the cells remain alive, healthy and relatively unaltered without any harmful effects from the process is one of the major advances of the new approach over other strategies using magnetism.

"Others have tried using magnetic particles either within or on the surface of the cells," Erb said. "However, the iron in the nanoparticles can be toxic to cells. Also, the process of removing the nanoparticles afterward can be harmful to the cell and its function."

The key ingredient for these studies was the synthesis of non-toxic ferrofluids by colleagues Bappaditya Samanta and Vincent Rotello at the University of Massachusetts, who developed a method for coating the magnetic nanoparticles with bovine serum albumin (BSA), a protein derived from cow blood. BSA is a stable protein used in many experiments because it is biochemically inert. In these experiments, the BSA shielded the cells from the toxic iron.

"The other main benefit of our approach is that we are creating three-dimensional cell chains without any sophisticated techniques or equipment," Krebs said. "Any type of tissue we'd ultimately want to engineer will have to be three-dimensional."

For their experiments, the researchers used human umbilical vein endothelial cells. Others types of cells have also been used, and it appears to the researchers that this new approach can work with any type of cell.

"While still in the early stages, we have shown that we can form oriented cellular structures," said Eben Alsberg, assistant professor of Biomedical Engineering and Orthopedic Surgery at Case Western and senior author of the paper. "The next step is to see if the spatial arrangement of these cells in three dimensions will promote vascular formation. A major hurdle in tissue engineering has been vascularization, and we hope that this technology may help to address the problem."

The research was supported by the National Institutes of Health, the National Science Foundation and Case Western.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Magnetic Nano-'shepherds' Organize Cells." ScienceDaily. ScienceDaily, 9 April 2009. <www.sciencedaily.com/releases/2009/03/090331153018.htm>.
Duke University. (2009, April 9). Magnetic Nano-'shepherds' Organize Cells. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/03/090331153018.htm
Duke University. "Magnetic Nano-'shepherds' Organize Cells." ScienceDaily. www.sciencedaily.com/releases/2009/03/090331153018.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins