Featured Research

from universities, journals, and other organizations

Tapping Industrial Waste Heat Could Reduce Fossil Fuel Demands

Date:
April 4, 2009
Source:
Inderscience Publishers
Summary:
Tapping industrial waste heat could reduce fossil fuel demands in the short term and improve efficiency of countless manufacturing processes, according to scientists.

Tapping industrial waste heat could reduce fossil fuel demands in the short term and improve efficiency of countless manufacturing processes, according to scientists in Japan.

Related Articles


Lihua Zhang and Tomohiro Akiyama of Hokkaido University, Sapporo, explain that heat waste from industrial processes, such as combustion and electricity generation is sometimes of low energy and diffuse. Capturing this low-quality heat for re-use elsewhere on an industrial plant is usually not practical. However, given current environmental and economic pressures the recuperation of such heat energy could become viable.

The team has investigated three promising technologies for heat recovery: latent heat, reaction heat, and the use of a Thermoelectric Device. The aim of their study was to find a way to capture the heat from industrial furnaces and other systems without the constraints of time and space associated with simply using the heat to produce steam to drive other processes at precisely the same site. They say their approach can "recuperate industrial waste heat beyond time and space."

Key to making heat recuperation viable is understanding the nature of the energy involved. The temperature distribution of waste heat depends largely on the type of industry. For example, 95% of the waste heat in the electric power industry has a temperature below 150 Celsius. In contrast, 45% of the waste heat in the chemical industry can be up to 50 Celsius above this.

Plant operators usually look at thermal energy in terms of simple enthalpy - the heat content - and conclude that capturing heat of low temperature is not viable for powering other processes. Zhang and Akiyama, however, suggest that exergy - the ability of the waste heat to do useful work - should also be taken into consideration when planning an energy-saving strategy from the viewpoint of quality of energy.

They point out that high-temperature waste heat, with an adequately large exergy value exists in many manufacturing industries. For example, slag and exhaust gases from steelmaking reside at well over 1000 Celsius, representing a powerful energy source. They explain that latent heat storage, chemical storage, and thermoelectric conversion could be used as effective ways of recovering waste heat, either individually or in combination.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhang et al. How to recuperate industrial waste heat beyond time and space. International Journal of Exergy, 2009; 6 (2): 214 DOI: 10.1504/IJEX.2009.023999

Cite This Page:

Inderscience Publishers. "Tapping Industrial Waste Heat Could Reduce Fossil Fuel Demands." ScienceDaily. ScienceDaily, 4 April 2009. <www.sciencedaily.com/releases/2009/04/090401102235.htm>.
Inderscience Publishers. (2009, April 4). Tapping Industrial Waste Heat Could Reduce Fossil Fuel Demands. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/04/090401102235.htm
Inderscience Publishers. "Tapping Industrial Waste Heat Could Reduce Fossil Fuel Demands." ScienceDaily. www.sciencedaily.com/releases/2009/04/090401102235.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins