Featured Research

from universities, journals, and other organizations

Computers 'Trained' To Analyze Fruit-fly Behavior

Date:
April 17, 2009
Source:
California Institute of Technology
Summary:
Scientists have trained computers to automatically analyze aggression and courtship in fruit flies, opening the way for researchers to perform large-scale, high-throughput screens for genes that control these innate behaviors. The program allows computers to examine half an hour of video footage of pairs of interacting flies in what is almost real time; characterizing the behavior of a new line of flies "by hand" might take a biologist more than 100 hours.

Scientists at the California Institute of Technology (Caltech) have trained computers to automatically analyze aggression and courtship in fruit flies, opening the way for researchers to perform large-scale, high-throughput screens for genes that control these innate behaviors.

Related Articles


The program allows computers to examine half an hour of video footage of pairs of interacting flies in what is almost real time; characterizing the behavior of a new line of flies "by hand" might take a biologist more than 100 hours.

This work--led by Pietro Perona, the Allen E. Puckett Professor of Electrical Engineering at Caltech, and David J. Anderson, the Roger W. Sperry Professor of Biology at Caltech, and a Howard Hughes Medical Institute Investigator--is detailed in the April issue of Nature Methods.

"Everyone wants to know how genes control behavior," notes Anderson. "But in order to apply powerful genetic analyses to complicated social behaviors like aggression and courtship, you need accurate ways of measuring--of scoring--those behaviors."

Previously, the only way to do this was to have students "watch video tapes over and over to record one particular type of behavior at a time," says Anderson. Using this method to measure a number of different types of behaviors--like lunging, tussling, chasing, circling, and copulating--or even to determine the way the flies orient their bodies or set their wings when they encounter another fly, requires the student to watch the same bit of video repeatedly, each time looking at the behavior of a single pair of flies. "In order to screen for mutations affecting aggressive behavior, we would have to analyze something like 2,000 pairs of flies," says Anderson. "It's been virtually impossible to do this without a small army of graduate students."

Enter Perona and Heiko Dankert, a postdoctoral scholar in electrical engineering. Using the techniques of machine vision and combining them with other engineering advancements, the two began training computers to see and recognize aggression and courtship behaviors. The result? An automated system that can monitor a wide variety of behaviors in videos of interacting fruit-fly pairs in a matter of minutes.

"This is a coming-of-age moment in this field," says Perona. "By choosing among existing machine vision techniques, we were able to put together a system that is much more capable than anything that had been demonstrated before."

The team fed the computer the characteristic details of what each individual behavior looks like on video. A lunge, for instance, begins with a shortening of the fly's body as the fly rears up; the fly then makes a quick darting movement, closing to within a few centimeters of another fly.

Once the computer had mastered these details, the researchers then compared the computer's analysis of a piece of video to the analysis produced by a human. "We looked at how many instances the computer caught, and how many it missed," says Anderson. "By looking at the errors the computer made, we were able to further refine our descriptions to create an even more accurate system."

In the end, Anderson notes, this back-and-forth resulted in a program that is "actually better than humans at detecting some of the instances of the various behaviors."

"Where previous experiments had been carried out on 100 to 1,000 frames of video, we carried out our experiments on 100,000 frames of video," Perona adds. "And while previous experiments showed numerous errors in tracking, we get very few. We are able to give accurate performance figures."

The next step, says Anderson, is to try to extend this automatic behavior-detection system to mice--a more difficult task when you're dealing with a fuzzy-edged creature like a mammal, but one that is important if we hope to some day link the genes behind fruit-fly behaviors with the genes that may cause similar behaviors in humans.

"Our visual system tells us a lot about what other people are doing--who is eating, who is beating someone else up, who is blushing, who got the guy or girl," Perona notes. "One goal of my field, computational vision, is designing machines that can detect and interpret human intentions, actions and activities. To do that, we need to start with organisms that are simpler and easier to study. David Anderson showed me how interesting and rich fly behaviors are, and so we started collaborating."

"There's a lot of information in these videos that we can now squeeze out in order to understand what controls these social interactions in flies," Anderson adds. "It makes it possible for us to study what we were not capable of studying before."

This work was supported by the Howard Hughes Medical Institute, the National Science Foundation, and a Feodor Lynen fellowship awarded to Dankert by the Alexander von Humboldt Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dankert et al. Automated monitoring and analysis of social behavior in Drosophila. Nature Methods, 2009; 6 (4): 297 DOI: 10.1038/nmeth.1310

Cite This Page:

California Institute of Technology. "Computers 'Trained' To Analyze Fruit-fly Behavior." ScienceDaily. ScienceDaily, 17 April 2009. <www.sciencedaily.com/releases/2009/04/090408145358.htm>.
California Institute of Technology. (2009, April 17). Computers 'Trained' To Analyze Fruit-fly Behavior. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/04/090408145358.htm
California Institute of Technology. "Computers 'Trained' To Analyze Fruit-fly Behavior." ScienceDaily. www.sciencedaily.com/releases/2009/04/090408145358.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins