Featured Research

from universities, journals, and other organizations

Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick

Date:
April 14, 2009
Source:
Kansas State University
Summary:
Scientists are combining biological materials with graphene, a recently developed carbon material that is only a single atom thick.

Scientists are combining biological materials with graphene, a recently developed carbon material that is only a single atom thick.
Credit: Image courtesy of Kansas State University

Kansas State University engineers think the possibilities are deep for a very thin material.

Vikas Berry, assistant professor of chemical engineering, is leading research combining biological materials with graphene, a recently developed carbon material that is only a single atom thick.

"The biological interfacing of graphene is taking this material to the next level," Berry said. "Discovered only four years ago, this material has already shown a large number of capabilities. K-Staters are the first to do bio-integrated research with graphene."

To study graphene, researchers rely on an atomic force microscope to help them observe and manipulate these single atom thick carbon sheets.

"It's a fascinating material to work with," Berry said. "The most significant feature of graphene is that the electrons can travel without interruptions at speeds close to that of light at room temperature. Usually you have to go near zero Kelvin -- that's about 450 degrees below zero Fahrenheit -- to get electrons to move at ultra high speeds."

One of Berry's developments is a graphene-based DNA sensor. When electrons flow on the graphene, they change speed if they encounter DNA. The researchers notice this change by measuring the electrical conductivity. The work was published in Nano-Letters.

"Most DNA sensors are optical, but this one is electrical," Berry said. "We are currently collaborating with researchers from Harvard Medical School to sense cancer cells in blood."

Another area he is exploring is loading graphene with antibodies and flowing bacteria across the surface.

"Most researchers focus on pristine graphene, but we're making it dirty," he said.

Berry and Nihar Mohanty, a graduate student in chemical engineering, used a type of bacteria commonly found in rice and interfaced it with graphene. They found that the graphene with tethered antibodies will wrap itself around an individual bacterium, which remains alive for 12 hours.

Berry said that possible applications include a high-efficiency bacteria-operated battery, where by using geobater, a type of bacteria known to produce electrons, can be wrapped with graphene to produce electricity. The research was presented at the annual American Physical Society conference in Pittsburgh and the American Institute for Chemical Engineers conference in Philadelphia.

"Materials science is an incredible field with several exploitable quantum effects occurring at molecular scale, and biology is a remarkable field with a variety of specific biochemical mechanisms," Berry said. "But for the most part the two fields are isolated. If you join these two fields, the possibilities are going to be immense. For example, one can think of a bacterium as a machine with molecular scale components and one can exploit the functioning of those components in a material device."

For his doctoral research, Berry used bacteria to make a humidity sensor.

"That was only possible through combining materials science with biological science," he said.

Another area of his current research is compressing and stretching molecular-junctions between nanoparticles. Berry said that his group has developed a molecular-spring device where they can compress and stretch molecules, which then act like springs, allowing researchers to study how they relax back. He said that this technology could be used to create molecular-timers in which the spring action from a decompressed molecule on a chip could trigger a circuit, for instance.

Berry said for stretching the molecules, Kabeer Jasuja, a doctoral student in chemical engineering, came up with the idea to place the device on a centrifuge to stretch the molecules with centrifugal force.

The work was published in the journal Small.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal References:

  1. Nihar Mohanty and Vikas Berry. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters, 2008; 8 (12): 4469 DOI: 10.1021/nl802412n
  2. Kabeer Jasuja, Arthur Thompson, Vikas Berry. Reversibly Compressible and Stretchable “Springlike” Polymeric Nanojunctions Between Metal Nanoparticles. Small, 2008; 4 (12): 2181 DOI: 10.1002/smll.200800788

Cite This Page:

Kansas State University. "Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick." ScienceDaily. ScienceDaily, 14 April 2009. <www.sciencedaily.com/releases/2009/04/090413141256.htm>.
Kansas State University. (2009, April 14). Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2009/04/090413141256.htm
Kansas State University. "Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick." ScienceDaily. www.sciencedaily.com/releases/2009/04/090413141256.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins