Featured Research

from universities, journals, and other organizations

Gene-laden Bubbles Grow New Blood Vessels

Date:
April 29, 2009
Source:
American Institute of Physics
Summary:
Progress in human gene therapy -- the insertion of therapeutic DNA into tissues and cells in the human body -- has been slower than expected since the first clinical trials in 1990. One of the biggest challenges for this technology is finding ways to safely and effectively deliver genes only to the specific parts of the body that they are meant to treat.

Progress in human gene therapy -- the insertion of therapeutic DNA into tissues and cells in the human body -- has been slower than expected since the first clinical trials in 1990. One of the biggest challenges for this technology is finding ways to safely and effectively deliver genes only to the specific parts of the body that they are meant to treat.

Cardiologist Jonathan Lindner of Oregon Health and Science University will discuss his latest experiments in gene therapy, which use microscopic bubbles chemically modified to stick to the cells that line blood vessels.

This technique, ultrasound-mediated gene delivery (UMGD), exploits the properties of contrast agents, microparticles that are normally injected into the body to improve the quality of ultrasound images. In UMGD, the tiny particles are microbubbles composed of pockets of gas encapsulated by thin membranes that are coated with DNA before injection. A targeted pulse of ultrasound energy "rings" the bubbles like a bell, popping them in a specific location and releasing the DNA into the surrounding tissue.

To improve the specificity of this targeting, Lindner grafts long arm-like molecules to the outside of the bubbles. These arms, which do not interfere with the DNA attached to surface, are designed to recognize and bind to molecules on the outside of specific cells in the body, allowing the bubbles to attach to a tissue before being popped. In theory, this should improve both the specificity and efficiency of the gene therapy.

Lindner created an arm designed to attach to endothelial cells lining blood vessels. He will present data evaluating the behavior of these "targeted" bubbles in living tissue. The ability to stick these gene-laden microbubbles to the lining of blood vessels increased the amount of gene transfection. This strategy may be particularly important for delivering therapeutic DNA to the walls of blood vessels. For example, Dr. Lindner and collaborators have successfully stimulated the growth of new blood vessels using UMGD with microbubbles carrying a gene for vascular endothelial growth factor. This therapeutic use could be important for treating ischemia in patients who have had a heart attack, peripheral artery disease, or stroke.

The team is also investigating using the bubbles to transport small doses of drugs. "If you're trying to deliver a nasty drug to part of the body, this may be a way to improve safety," says Lindner.

The talk "Targeted microbubble technology and ultrasound-mediated gene delivery" by Jonathan Lindnerwill be presented at the 157th Acoustical Society of America Meeting to be held May 18-22 in Portland, Ore.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Gene-laden Bubbles Grow New Blood Vessels." ScienceDaily. ScienceDaily, 29 April 2009. <www.sciencedaily.com/releases/2009/04/090426094213.htm>.
American Institute of Physics. (2009, April 29). Gene-laden Bubbles Grow New Blood Vessels. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/04/090426094213.htm
American Institute of Physics. "Gene-laden Bubbles Grow New Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/2009/04/090426094213.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins