Featured Research

from universities, journals, and other organizations

Gene-laden Bubbles Grow New Blood Vessels

Date:
April 29, 2009
Source:
American Institute of Physics
Summary:
Progress in human gene therapy -- the insertion of therapeutic DNA into tissues and cells in the human body -- has been slower than expected since the first clinical trials in 1990. One of the biggest challenges for this technology is finding ways to safely and effectively deliver genes only to the specific parts of the body that they are meant to treat.

Progress in human gene therapy -- the insertion of therapeutic DNA into tissues and cells in the human body -- has been slower than expected since the first clinical trials in 1990. One of the biggest challenges for this technology is finding ways to safely and effectively deliver genes only to the specific parts of the body that they are meant to treat.

Cardiologist Jonathan Lindner of Oregon Health and Science University will discuss his latest experiments in gene therapy, which use microscopic bubbles chemically modified to stick to the cells that line blood vessels.

This technique, ultrasound-mediated gene delivery (UMGD), exploits the properties of contrast agents, microparticles that are normally injected into the body to improve the quality of ultrasound images. In UMGD, the tiny particles are microbubbles composed of pockets of gas encapsulated by thin membranes that are coated with DNA before injection. A targeted pulse of ultrasound energy "rings" the bubbles like a bell, popping them in a specific location and releasing the DNA into the surrounding tissue.

To improve the specificity of this targeting, Lindner grafts long arm-like molecules to the outside of the bubbles. These arms, which do not interfere with the DNA attached to surface, are designed to recognize and bind to molecules on the outside of specific cells in the body, allowing the bubbles to attach to a tissue before being popped. In theory, this should improve both the specificity and efficiency of the gene therapy.

Lindner created an arm designed to attach to endothelial cells lining blood vessels. He will present data evaluating the behavior of these "targeted" bubbles in living tissue. The ability to stick these gene-laden microbubbles to the lining of blood vessels increased the amount of gene transfection. This strategy may be particularly important for delivering therapeutic DNA to the walls of blood vessels. For example, Dr. Lindner and collaborators have successfully stimulated the growth of new blood vessels using UMGD with microbubbles carrying a gene for vascular endothelial growth factor. This therapeutic use could be important for treating ischemia in patients who have had a heart attack, peripheral artery disease, or stroke.

The team is also investigating using the bubbles to transport small doses of drugs. "If you're trying to deliver a nasty drug to part of the body, this may be a way to improve safety," says Lindner.

The talk "Targeted microbubble technology and ultrasound-mediated gene delivery" by Jonathan Lindnerwill be presented at the 157th Acoustical Society of America Meeting to be held May 18-22 in Portland, Ore.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Gene-laden Bubbles Grow New Blood Vessels." ScienceDaily. ScienceDaily, 29 April 2009. <www.sciencedaily.com/releases/2009/04/090426094213.htm>.
American Institute of Physics. (2009, April 29). Gene-laden Bubbles Grow New Blood Vessels. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/04/090426094213.htm
American Institute of Physics. "Gene-laden Bubbles Grow New Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/2009/04/090426094213.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins