Featured Research

from universities, journals, and other organizations

Large Sponges May Be Reattached To Coral Reefs

Date:
April 28, 2009
Source:
Wiley-Blackwell
Summary:
Marine biologists have developed a novel technique for reattaching large sponges that have been dislodged from coral reefs. The findings could be generally applied to the restoration of other large sponge species removed by human activities or storms.

A new study describes a novel technique for reattaching large sponges that have been dislodged from coral reefs. The findings could be generally applied to the restoration of other large sponge species removed by human activities or storms.

Related Articles


20 specimens of the Caribbean giant barrel sponge were removed and reattached at Conch Reef off of Key Largo, Florida in 2004 and 2005 at depths of 15m and 30m. The sponges were affixed to the reef using sponge holders consisting of polyvinyl chloride piping, which was anchored in a concrete block that was set on a plastic mesh base.

Though the test area endured four hurricanes during the study period, 62.5 percent of sponges survived at least 2.3-3 years and 90 percent of the sponges attached in deep water locations survived. The sponges reattached to the reef after being held stationary by sponge holders for as little as 6 months.

Large sponges may be damaged by a variety of natural events and human activities including severe storms, vessel groundings and the cutting movements of chain or rope moved along with debris by strong currents. After these events, detached large sponges are commonly found, still alive and intact, between reef spurs on sand or rubble where they slowly erode under the action of oscillating currents.

“The worldwide decline of coral reef ecosystems has prompted many local restoration efforts, which typically focus on reattachment of reef-building corals,” says Professor Joseph Pawlik of the University of North Carolina-Wilmington, co-author of the study. “Despite their dominance on coral reefs, large sponges are generally excluded from restoration efforts because of a lack of suitable methods for sponge reattachment.”

These sponges, which often exceed reef-building corals in abundance, can be more than 1m in diameter and may be hundreds or thousands of years old. The success of past attempts at reattaching sponges, which used cement or epoxy, has been limited because adhesives do not bind to sponge tissue. When damaged or dislodged, large sponges usually die because they are unable to reattach to the reef. The results of the study show that these sponges have the ability to reattach to the reef if they can be properly secured.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. McMurray et al. A Novel Technique for the Reattachment of Large Coral Reef Sponges. Restoration Ecology, 2009; 17 (2): 192 DOI: 10.1111/j.1526-100X.2008.00463.x

Cite This Page:

Wiley-Blackwell. "Large Sponges May Be Reattached To Coral Reefs." ScienceDaily. ScienceDaily, 28 April 2009. <www.sciencedaily.com/releases/2009/04/090427144825.htm>.
Wiley-Blackwell. (2009, April 28). Large Sponges May Be Reattached To Coral Reefs. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/04/090427144825.htm
Wiley-Blackwell. "Large Sponges May Be Reattached To Coral Reefs." ScienceDaily. www.sciencedaily.com/releases/2009/04/090427144825.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins