Featured Research

from universities, journals, and other organizations

Earth Still Recovering From A Glacial Hangover

Date:
May 4, 2009
Source:
National Oceanography Centre, University of Southampton
Summary:
A new explanation for the cause of changes in the chemical makeup of the oceans through recent Earth history has been put forward. Scientists suggest that adjustments in ocean chemistry through recent geological time are driven by variations in the intensity of chemical breakdown of continental rocks by rain and ground water.

Sediment-charged waters disgorge from beneath the Franz Josef Glacier, New Zealand.
Credit: Damon Teagle

A new explanation for the cause of changes in the chemical makeup of the oceans through recent Earth history is put forward in a paper published in Nature.

Related Articles


Scientists from the Universities of Southampton and Bristol suggest that adjustments in ocean chemistry through recent geological time are driven by variations in the intensity of chemical breakdown of continental rocks by rain and ground water. These changes are, in turn, controlled by the profound changes in the Earth's climate, and in particular the Ice Ages, that have occurred over the past 2-3 million years.

The elements that give seawater its distinctive saltiness are mostly supplied in dissolved form by rivers. Rivers, in turn, receive these elements from runoff that has reacted with and partially dissolved rocks, a process known as chemical weathering. Another major source of dissolved material to seawater is submarine “black smoker” hydrothermal systems. Movement of seawater through young, hot rocks at the mid-ocean ridges causes leaching of some elements from sea-floor basalts, as well as the precipitation out of solution of some constituents of seawater. Thus, these hydrothermal systems are both a source of dissolved material to the oceans and also a means by which some others are lost. The other major output of dissolved material from the oceans is to marine sediments, which are principally made up of the shells of dead marine organisms. Imbalances in these inputs and outputs cause changes in the chemical make-up of the oceans through time.

The team, led by Dr. Derek Vance of the University of Bristol, draws on records of past ocean chemistry preserved in deep-sea sediments to point out that some aspects of the chemistry of seawater have been changing too slowly over the past 2-3 million years given what is known about the sizes of the inputs and outputs to the oceans. The paper challenges the prevailing notion that this inconsistency is caused by inaccuracies in estimates of the impact of submarine hydrothermal systems on ocean chemistry, or that we don’t have accurate measurements of river chemistry and run off. Instead, they point to changes in continental chemical weathering rates caused by profound climate change operating over the past 2-3 million years.

Dr Vance explains, “Chemical weathering rates have been periodically perturbed in recent Earth history because the ice-sheets and glaciers produced during the great ice ages have physically ground rock up to smaller and smaller grain sizes. In the succeeding hotter and wetter ‘interglacial’ periods, this ground up rock is very susceptible to chemical weathering.” All chemical reactions occur faster if the substrate is finer grained because there is more surface area for reaction to take place – this is why school chemical experiments use iron filings instead of a block of steel!

One of the main conclusions is that in the instant of geological time represented by, say, the last 100 years, landscapes remain significantly perturbed by this process. Co-author Professor Damon Teagle, of the University of Southampton’s School of Ocean and Earth Science, based at the National Oceanography Centre, Southampton, explains, “The Earth emerged from the last Ice Age only 10,000 years ago, and chemical weathering is still playing ‘catch-up’ with the massive production of reactive, fine-grained particles produced during the last Ice Age.” As a result the measurements of the chemistry of rivers that scientists are currently making, although an accurate estimation of the modern Earth, are not representative of the past few million years.

The team conclude the paper by assessing some of the implications. One of these is the potential impact on the natural greenhouse effect on planet Earth. Chemical weathering not only dissolves rocks, it reacts atmospheric CO2 with those rocks and takes CO2 out of the atmosphere. This carbon is also washed into the oceans in dissolved form, where it is incorporated into the calcium carbonate shells of marine organisms, which in turn die and accumulate in deep ocean sediment.

On very long timescales – longer than hundreds of thousands of years – the amount of CO2 in the atmosphere represents a balance between that emitted as volcanic gases versus that the amount taken up by chemical weathering. The conventional view of the long-term evolution of Earth's climate is that chemical weathering and CO2 act together to thermostatically regulate the Earth's surface temperature. If for some reason atmospheric CO2 increases, the resulting higher temperatures cause greater chemical weathering, which acts to reduce the CO2 concentration of the atmosphere.

The team further suggest that during Ice Ages, this thermostat could be over-ridden due to glaciers grinding up much greater quantities of rock, which results in much higher rates of chemical weathering, leading to increased removal of CO2 from the atmosphere. Bristol's Gavin Foster remarks "this means that in periods like the last 2-3 million years, higher chemical weathering rates could act to maintain ‘icehouse’ conditions once they have started". However, no one should make the mistake of thinking that these processes could extract us from the modern predicament of high and rising atmospheric CO2. The natural processes discussed in this article are slow and, although crucial on geological timescales of hundreds of thousands to millions of years, are not relevant to the short span of modern industrialised society.


Story Source:

The above story is based on materials provided by National Oceanography Centre, University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vance et al. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature, 2009; 458 (7237): 493 DOI: 10.1038/nature07828

Cite This Page:

National Oceanography Centre, University of Southampton. "Earth Still Recovering From A Glacial Hangover." ScienceDaily. ScienceDaily, 4 May 2009. <www.sciencedaily.com/releases/2009/04/090429180955.htm>.
National Oceanography Centre, University of Southampton. (2009, May 4). Earth Still Recovering From A Glacial Hangover. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2009/04/090429180955.htm
National Oceanography Centre, University of Southampton. "Earth Still Recovering From A Glacial Hangover." ScienceDaily. www.sciencedaily.com/releases/2009/04/090429180955.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Japan's Mt. Aso Volcano Spews Rocks

Raw: Japan's Mt. Aso Volcano Spews Rocks

AP (Nov. 28, 2014) — A volcano in southern Japan is spewing volcanic magma rocks. A regional weather observatory says this could be Mt. Aso's first magma eruption in 22 years. (Nov. 28) Video provided by AP
Powered by NewsLook.com
Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins