Featured Research

from universities, journals, and other organizations

Drug Prevents Seizure Progression In Model Of Epilepsy

Date:
May 5, 2009
Source:
Carnegie Mellon University
Summary:
Researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The research discovery builds on previous work identifying a specific molecular target whose increased activity is associated with seizure disorders, a potassium channel known as the BK channel.

Carnegie Mellon University researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The findings are published in the current issue of the journal Epilepsia.

Related Articles


The research discovery builds on previous work identifying a specific molecular target whose increased activity is associated with seizure disorders, a potassium channel known as the BK channel.

"We have found a new anticonvulsant compound that eliminates seizures in a model of epilepsy," said Alison Barth, associate professor of biological sciences at Carnegie Mellon's Mellon College of Science. "The drug works by inhibiting ion channels whose role in epilepsy was only recently discovered. Understanding how these channels work in seizure disorders, and being able to target them with a simple treatment, represents a significant advance in our ability to understand and treat epilepsy."

Epilepsy is a neurological disorder marked by abnormal electrical activity in the brain that leads to recurring seizures. A person who has a first seizure is statistically much more likely to have a second, and with each subsequent seizure, the chance of having another seizure grows. A person is often diagnosed with epilepsy after having two or more seizures that have no other apparent cause.

In prior studies, Barth and colleagues were the first to link BK channels, ion channels that allow electrically charged potassium ions to move out of cells, to sporadic epilepsy. Previous studies had shown that these channels were genetically altered in a few rare individuals who suffer from the disease, but Barth and colleagues demonstrated that seizures themselves could lead to the same alterations in BK channel function.

Potassium ions move through the channels, starting and stopping the electrical impulses that allow neurons to communicate with one another. The Carnegie Mellon researchers found that after a first seizure, BK channel function was markedly enhanced. As a result, the neurons became overly excitable and were firing with more speed, intensity and spontaneity, leading Barth to believe that the abnormal increased activity of the channels might play a role in causing subsequent seizures and the emergence of epilepsy.

In the current study, Barth tested this theory by blocking the ion channels using a BK-channel antagonist called paxilline. Using an experimental model for epilepsy, Barth asked whether paxilline could reduce or prevent experimentally induced seizures, as it could normalize aberrant brain activity induced by previous seizures. Remarkably, Barth and colleagues Jesse Sheehan and Brett Benedetti discovered that the compound was effective at completely blocking subsequent seizures.

"The drug is orally available, and works in the low nanomolar range," said Barth, noting that these characteristics, which mean the drug is effective in low concentrations and can be taken as a pill, make it an especially promising compound for treatment in epilepsy patients. While most anticonvulsants currently used to treat epilepsy work to directly inhibit the activity of neurotransmitters that causes seizures, few compounds interact with specific ion channels, especially potassium channels. The researchers believe that targeting the BK channels and the abnormal brain activity that they induce might one day be used as a way to prevent the progression of seizure disorders over time, thus attacking the root cause of epilepsy.

According to Barth, the next steps will be to further investigate paxilline to see whether it is an effective anticonvulsant treatment for multiple types of seizures. The investigators continue to look at how BK channels are regulated by seizures to better understand the development of epilepsy.

Co-authors of the study include Sheehan and Benedetti, doctoral students in the Department of Biological Sciences and Center for the Neural Basis of Cognition at Carnegie Mellon. The study was funded by the National Institutes of Health, the Milken Family Foundation for Translational Research and the Alfred P. Sloan Foundation.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Drug Prevents Seizure Progression In Model Of Epilepsy." ScienceDaily. ScienceDaily, 5 May 2009. <www.sciencedaily.com/releases/2009/05/090504122155.htm>.
Carnegie Mellon University. (2009, May 5). Drug Prevents Seizure Progression In Model Of Epilepsy. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/05/090504122155.htm
Carnegie Mellon University. "Drug Prevents Seizure Progression In Model Of Epilepsy." ScienceDaily. www.sciencedaily.com/releases/2009/05/090504122155.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins