Featured Research

from universities, journals, and other organizations

Fast And Efficient As Soon As They Are Dead: Jellyfish-like Creatures May Play Major Role In The Marine Carbon Transport System

Date:
May 18, 2009
Source:
Leibniz Institute of Marine Sciences (IFM-GEOMAR)
Summary:
As a fast and efficient means of transport, jellyfish-like organisms could play a major role in the marine carbon cycle. Marine biologists report that dead bodies of the marine organism Pyrosoma atlanticum may be transporting much more carbon to the seafloor than phytoplankton or other jellyfish-like creatures.

Gelatinous carcasses of Pyrosoma atlanticum (left) and sea urchins (right) at the seabed at 700 metres next to an oil-pipeline.
Credit: Lebrato/ Jones 2009 / IFM-GEOMAR

As a fast and efficient means of transport, jellyfish-like organisms known as Pyrosoma atlanticum could play a major role in the marine carbon cycle.

Related Articles


Biogeochemists from the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany, and the National Oceanography Centre in Southampton (NOCS), UK, report that dead bodies of the marine organism Pyrosoma atlanticum may be transporting much more carbon to the seafloor than phytoplankton or other jellyfish-like creatures.

Pyrosoma atlanticum are semi-transparent, barrel-shaped marine animals, about the size of a human thumb. They move through the water by drawing water in the front end and propelling it out the rear in a sort of jet propulsion. They belong to the group of thaliacean and consist of gelatinous substance like jellyfish. Swarming by millions in ‚hot spots‘ and also dying by millions like salps, Pyrosoma atlanticum may be transporting tons of carbon per year from the ocean surface to the deep sea.

In May 2006 off Ivory Coast (West Africa) the biogeochemists Mario Lebrato (IFM-GEOMAR) and Dr. Daniel Jones (NOCS) discovered thousands of moribund thaliacean carcasses at the seafloor, the majority in depths of more than 500 metres in the continental slope. When they analysed dried samples, they were surprised: “A third of the carcasses consists of carbon. This is the highest proportion of carbon that has been measured in gelatinous organisms”, states Mario Lebrato.

Lebrato and Jones explain the high proportion of carbon and the density of the creatures with their fast sinking. „They don’t have the time to rot in the water column. That’s why they reach the seafloor nearly in their original condition, including the carbon inside“, continues Lebrato. On the seafloor the scientists also observed sea urchins and bacteria feeding on the decomposing carcasses.

The occurrence and quality of the sinking event needs further investigation on a global scale. Lebrato: “If this massive sinking of Pyrosoma atlanticum bodies is a global phenomenon we will need to include the transport capacity of jellyfish-like organisms into future earth system model: By transporting carbon from the ocean surface to the deep sea they keep it very efficiently from re-entering the atmosphere.”

Lebrato and Jones are positive: Their scientific results will trigger a lot of research on the role of gelatinous zooplankton for the marine carbon cycle.

Background information

The oceans play a major role in the Earth’s climate system. Until now, they have inhibited the greenhouse effect by absorbing a third of the carbon dioxide (CO2) emissions produced by human beings. In surface waters, tiny marine plants called phytoplankton use sunlight and carbon dioxide to grow. Animals (zooplankton) then consume the phytoplankton and incorporate the carbon. When phyto- or zooplankton die their biomass sinks and starts to decompose. During that process parts of the CO2 can dissolve back into the oceans and return to the atmosphere as heat-trapping carbon dioxide. But: The faster the biomass sinks the bigger is the chance that it turns into sediment at the seafloor and thus binds the CO2 permanently.


Story Source:

The above story is based on materials provided by Leibniz Institute of Marine Sciences (IFM-GEOMAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Lebrato1 and D. O. B. Jones. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography, 54(4) 2009

Cite This Page:

Leibniz Institute of Marine Sciences (IFM-GEOMAR). "Fast And Efficient As Soon As They Are Dead: Jellyfish-like Creatures May Play Major Role In The Marine Carbon Transport System." ScienceDaily. ScienceDaily, 18 May 2009. <www.sciencedaily.com/releases/2009/05/090513091618.htm>.
Leibniz Institute of Marine Sciences (IFM-GEOMAR). (2009, May 18). Fast And Efficient As Soon As They Are Dead: Jellyfish-like Creatures May Play Major Role In The Marine Carbon Transport System. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/05/090513091618.htm
Leibniz Institute of Marine Sciences (IFM-GEOMAR). "Fast And Efficient As Soon As They Are Dead: Jellyfish-like Creatures May Play Major Role In The Marine Carbon Transport System." ScienceDaily. www.sciencedaily.com/releases/2009/05/090513091618.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins