Featured Research

from universities, journals, and other organizations

Single Electron Captured In Tunable Carbon Nanotube Quantum Dot

Date:
May 15, 2009
Source:
Netherlands Organization for Scientific Research
Summary:
Researchers have successfully captured a single electron in a highly tunable carbon nanotube double quantum dot. This was made possible by a new approach for producing ultraclean nanotubes. Moreover, the researchers discovered a new sort of tunneling as a result of which electrons can fly straight through obstacles.

Researchers from the Kavli Institute of NanoScience in Delft are the first to have successfully captured a single electron in a highly tunable carbon nanotube double quantum dot. This was made possible by a new approach for producing ultraclean nanotubes. Moreover, the team of researchers, under the leadership of Spinoza winner Leo Kouwenhoven, discovered a new sort of tunnelling as a result of which electrons can fly straight through obstacles.

A quantum dot can be viewed as a small 'box' which traps a controllable number of electrons. This box is coupled to one or more gate electrodes with which the number of electrons on the dot can be varied. The researchers developed a new technology to make extremely clean nanotube quantum dots. This makes it possible to capture a single electron in a nanotube. Moreover, the researchers succeeded in making the first highly-controllable single electron double dot.

Controlling quantum dots

One of the pipe dreams within quantum mechanics is the construction of a super-powerful quantum computer. In order to do this, it must be possible to manipulate the electron spin of the quantum dots. That would enable quantum information to be stored and read again. However, up until now it has proved impossible to accurately control double quantum dots in nanotubes (two quantum dots linked together) that capture only a single electron.

The researchers used silicon electrodes positioned close to the ultraclean nanotube to accurately control the number of electrons of the quantum dot. Three electrodes were used in the research, although more electrodes can be incorporated. The ultraclean tube ensures that no disruption occurs in the manipulation of the electrons.

Tunnelling

Whilst studying the double quantum dot, the researchers discovered a new type of tunnelling that is analogous to tunnelling according to the Klein paradox. Tunnelling is an effect in which rapidly moving electrons can fly straight through obstacles. The particle goes straight through a barrier even though it does not have enough energy to go over the barrier. Normally tunnelling ceases as soon as the barrier is too large. The famous Klein paradox predicts that if the barrier is made even bigger still, tunnelling can once again take place due to the influence of relativistic quantum mechanics.

In the case of normal tunnelling, electrons can only move from one quantum dot to another due to the tunnel coupling of the wave functions on both sides of the energy barrier within the double quantum dot. Researchers used the silicon gate electrodes to manipulate the barrier and observed tunnelling could become enhanced even though the barrier was increasing, as predicted in the Klein paradox. This method of tunnelling emphasises the close relationship between the physics of semiconductors, such as those in this research, and high-energy physics.

The research took place at the Kavli Institute for Nanoscience of Delft University of Technology. The first author of the article in Nature Nanotechnology is Gary Steele. Gary Steele, Georg Götz and Leo Kouwenhoven carried out the research with the aid of a grant from the Foundation for Fundamental Research on Matter (FOM) and NWO. Leo Kouwenhoven received the NWO/Spinoza Award in 2007.


Story Source:

The above story is based on materials provided by Netherlands Organization for Scientific Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. G.A. Steele, G. Götz and L.P. Kouwenhoven. Tunable few-electrodes double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes. Nature Nanotechnology, Online 5 April 2009

Cite This Page:

Netherlands Organization for Scientific Research. "Single Electron Captured In Tunable Carbon Nanotube Quantum Dot." ScienceDaily. ScienceDaily, 15 May 2009. <www.sciencedaily.com/releases/2009/05/090514084117.htm>.
Netherlands Organization for Scientific Research. (2009, May 15). Single Electron Captured In Tunable Carbon Nanotube Quantum Dot. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2009/05/090514084117.htm
Netherlands Organization for Scientific Research. "Single Electron Captured In Tunable Carbon Nanotube Quantum Dot." ScienceDaily. www.sciencedaily.com/releases/2009/05/090514084117.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins