Featured Research

from universities, journals, and other organizations

Melting Threat From West Antarctic Ice Sheet May Be Less Than Expected; But U.S. Coastal Cities At Risk

Date:
May 15, 2009
Source:
University of Colorado at Boulder
Summary:
While a total or partial collapse of the West Antarctic Ice Sheet as a result of warming would not raise global sea levels as high as some predict, levels on the US seaboards would rise 25 percent more than the global average and threaten cities like New York, Washington, D.C., and San Francisco, according to a new study.

Iceberg in Paradise Bay, West Antarctica.
Credit: iStockphoto/Micheal O Fiachra

While a total or partial collapse of the West Antarctic Ice Sheet as a result of warming would not raise global sea levels as high as some predict, levels on the U.S. seaboards would rise 25 percent more than the global average and threaten cities like New York, Washington, D.C., and San Francisco, according to a new study.

Long thought of as the sleeping giant with respect to sea level rise, Antarctica holds about nine times the volume of ice of Greenland. Its western ice sheet, known as WAIS, is of particular interest to scientists due to its inherent instability, a result of large areas of the continent's bedrock lying below sea level. But the ice sheet's potential contribution to sea level rise has been greatly overestimated, according to new calculations.

"There's a vast body of research that's looked at the likelihood of a WAIS collapse and what implications such a catastrophic event would have for the globe," said Jonathan Bamber, lead author of the study published in Science May 15. "But all of these studies have assumed a 5-meter to 6-meter contribution to sea level rise. Our calculations show those estimates are much too large, even on a thousand-year timescale."

Bamber and his colleagues found a WAIS collapse would only raise sea levels by 3.3 meters, or about 11 feet. Bamber, a professor at the University of Bristol in England, currently is a visiting fellow at the University of Colorado at Boulder's Cooperative Institute for Research in Environmental Sciences, or CIRES.

The study authors used models based on glaciological theory to simulate how the massive ice sheet likely would respond if the floating ice shelves fringing the continent broke free. Vast ice shelves currently block WAIS from spilling into the Weddell and Ross seas, limiting total ice loss to the ocean.

According to theory, if these floating ice shelves were removed, sizeable areas of WAIS would essentially become undammed, triggering an acceleration of the ice sheet toward the ocean and a rapid inland migration of the grounding line. The grounding line is the point where the ice sheet's margins meet the ocean and begin to float.

The most unstable areas of WAIS are those sections sitting in enormous inland basins on bedrock entirely below sea level. If the ice filling these basins becomes undammed by the disappearance of floating ice shelves, it quickly would become buoyant and form new floating ice shelves further inland, in time precipitating further breakup and collapse, according to existing theories.

The study authors assumed that only ice on the downward-sloping and inland-facing side of the basins would be vulnerable to collapse. They also assumed that ice grounded on bedrock that slopes upward inland or on bedrock that lies above sea level likely would survive.

"Unlike the world's other major ice sheets -- the East Antarctic Ice Sheet and Greenland -- WAIS is the only one with such an unstable configuration," said Bamber.

Just how rapid the collapse of WAIS would be is largely unknown. If such a large mass of ice steadily melted over 500 years, as has been suggested in earlier studies, it would add about 6.5 millimeters or a quarter of an inch per year to sea level rise -- about twice the current rate due to all sources.

"Interestingly, the pattern of sea level rise is independent of how fast or how much of the WAIS collapses," he said. "Even if the WAIS contributed only a meter of sea level rise over many years, sea levels along North America's shorelines would still increase 25 percent more than the global average," said Bamber.

Regional variations in sea level would largely be driven by the distribution of ice mass from the Antarctic continent to the oceans, according to the study. With less mass at the South Pole, Earth's gravity field would weaken in the Southern Hemisphere and strengthen in the Northern Hemisphere, causing water to pile up in the northern oceans.

This redistribution of mass also would affect Earth's rotation, which in turn would cause water to build up along the North American continent and in the Indian Ocean.

Study co-authors included Riccardo Riva and Bert Vermeersen from Delft University of Technology in the Netherlands and Anne LeBroq of the University of Durham in England. The study was conducted with support from the Natural Environment Research Council.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan L. Bamber, Riccardo E. M. Riva, Bert L. A. Vermeersen and Anne M. LeBroq. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 2009; 324 (5929): 901 DOI: 10.1126/science.1169335

Cite This Page:

University of Colorado at Boulder. "Melting Threat From West Antarctic Ice Sheet May Be Less Than Expected; But U.S. Coastal Cities At Risk." ScienceDaily. ScienceDaily, 15 May 2009. <www.sciencedaily.com/releases/2009/05/090514153032.htm>.
University of Colorado at Boulder. (2009, May 15). Melting Threat From West Antarctic Ice Sheet May Be Less Than Expected; But U.S. Coastal Cities At Risk. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/05/090514153032.htm
University of Colorado at Boulder. "Melting Threat From West Antarctic Ice Sheet May Be Less Than Expected; But U.S. Coastal Cities At Risk." ScienceDaily. www.sciencedaily.com/releases/2009/05/090514153032.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins