Featured Research

from universities, journals, and other organizations

Old Diabetes Drug Teaches Experts New Tricks

Date:
May 20, 2009
Source:
Johns Hopkins Medical Institutions
Summary:
New research reveals that the drug most commonly used in type 2 diabetics who don't need insulin works on a much more basic level than once thought, treating persistently elevated blood sugar -- the hallmark of type 2 diabetes -- by regulating the genes that control its production.

Research from the Johns Hopkins Children's Center reveals that the drug most commonly used in type 2 diabetics who don't need insulin works on a much more basic level than once thought, treating persistently elevated blood sugar — the hallmark of type 2 diabetes — by regulating the genes that control its production.

Reporting in the May 15 issue of Cell, investigators say they have zeroed in on a specific segment of a protein called CBP made by the genetic switches involved in overproduction of glucose by the liver that could present new targets for drug therapy of the disease.

In healthy people, the liver produces glucose during fasting to maintain normal levels of cell energy production. After people eat, the pancreas releases insulin, the hormone responsible for glucose absorption. Once insulin is released, the liver should turn down or turn off its glucose production, but in people with type 2 diabetes, the liver fails to sense insulin and continues to make glucose. The condition, known as insulin resistance, is caused by a glitch in the communication between liver and pancreas.

Metformin, introduced as frontline therapy for uncomplicated type 2 diabetes in the 1950s, up until now was believed to work by making the liver more sensitive to insulin. The Hopkins study shows, however, that metformin bypasses the stumbling block in communication and works directly in the liver cells.

"Rather than an interpreter of insulin-liver communication, metformin takes over as the messenger itself," says senior investigator Fred Wondisford, M.D., who heads the metabolism division at Hopkins Children's. "Metformin actually mimics the action of CBP, the critical signaling protein involved in the communication between the liver and the pancreas that's necessary for maintaining glucose production by the liver and its suppression by insulin."

To test their hypothesis, researchers induced insulin resistance in mice by feeding them a high-fat diet over several months. Mice on high-fat diets developed insulin resistance, and their high blood glucose levels did not drop to normal after eating. Once treated with metformin, however, CBP was activated to the levels of nondiabetic mice, and their blood glucose levels returned to normal. However, when given to diabetic mice with defective copies of CBP, metformin had no effect on blood glucose levels, a proof that metformin works through CBP.

Researchers further were able to determine that metformin worked on one particular section of CBP by studying the drug's effects in mice with normal CBP and in mice missing this section of their CBP. The mice with normal CBP responded to metformin with a drop in their fasting blood glucose — much like diabetes patients do — while the mice missing that section in their CBP had no decrease in their blood sugar.

Because CBP is involved in growth and development and a variety of metabolic processes in other organs, this newly discovered pathway may hold therapeutic promise for conditions like growth retardation, cancer and infertility, investigators say.

Another important finding in the study: Investigators have discovered a biomarker that can predict how well a person will respond to treatment with metformin and help doctors determine the optimal therapeutic dose, which can vary widely from person to person. The Hopkins team has found that in mice, metformin changes CBP in white bloods cells — just as it does in liver cells — creating a molecular marker that is easily measured via a standard blood test.

"This is the quintessence of individualized medicine: We have found an easily obtainable biomarker with great predictive power that can tell us whether and how well an individual will respond to treatment and help us determine the best dose right away instead of trying to do it by trial and error," Wondisford says.

Researchers caution that, while promising, their findings must be first replicated in humans.

Diabetes (type 1 and type 2) is a leading cause of kidney failure, eye disease and amputations, and one of the main causes of heart disease and stroke. Nearly 24 million Americans have type 2 diabetes, according to the U.S. Centers for Disease Control.

Lead author of the paper is Ling He.

Other investigators in the study include Amin Sabet, Stephen Djedjos, Ryan Miller, Mehboob Hussain and Sally Radovick, all of Hopkins, and Xiaojian Sun, of the University of Chicago.

The research was funded by the National Institutes of Health and by the Baltimore Diabetes Research and Training Center, a joint endeavor between Johns Hopkins and the University of Maryland for basic science, clinical research and community outreach on diabetes and obesity in both adults and children.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Old Diabetes Drug Teaches Experts New Tricks." ScienceDaily. ScienceDaily, 20 May 2009. <www.sciencedaily.com/releases/2009/05/090514153136.htm>.
Johns Hopkins Medical Institutions. (2009, May 20). Old Diabetes Drug Teaches Experts New Tricks. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/05/090514153136.htm
Johns Hopkins Medical Institutions. "Old Diabetes Drug Teaches Experts New Tricks." ScienceDaily. www.sciencedaily.com/releases/2009/05/090514153136.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins