Featured Research

from universities, journals, and other organizations

Using High-precision Laser Tweezers To Juggle Cells

Date:
May 19, 2009
Source:
University of Gothenburg
Summary:
Researchers have developed a new method to study single cells while exposing them to controlled environmental changes. The unique method, where a set of laser tweezers move the cell around in a microscopic channel system, allows the researchers to study how single cells react to stress induced by a constantly changing environment.

Yeast cells tagged with a green fluorescent protein that has been stressed with sodium chloride.
Credit: Photo by Emma Eriksson & Elzbieta Petelenz

Researchers at the University of Gothenburg, Sweden, have developed a new method to study single cells while exposing them to controlled environmental changes. The unique method, where a set of laser tweezers move the cell around in a microscopic channel system, allows the researchers to study how single cells react to stress induced by a constantly changing environment.

Studies on how cells react to changes in their environment, such as reduced availability of nutrients, have traditionally used cultures consisting of millions of cells. While such studies show how cells on average react to a new environment, they say nothing about individual variation, for example how quickly a single cell responds.

Catches and moves cells

Researcher Emma Eriksson and her colleagues at the Department of Physics, University of Gothenburg, Sweden, developed a method where laser tweezers are used to catch a cell the size of about one micrometer, or 0.001 of a mm, and then move the cell between different environments. Placing the cell in a system of channels made of silicone, in which each channel is finer than a human hair, enables the researchers to add and remove substances so that the environment surrounding a single cell changes in a split second - while at the same time watching the reactions through a microscope.

New information

The channels in the so-called microfluidic system can be likened to tiny water pipes. In a channel, a single cell can be exposed to tests and various substances for very exact time periods, which enables the researchers to repeatedly add and remove a substance to see how it affects the behaviour of the cell. This new method gives researchers information that would not be possible to obtain with traditional methods.

How cells survive

In its first stage, the new method has been tested on yeast cells. One of the cells' proteins was tagged with a green fluorescent protein (GFP), enabling researchers to trace the movements of the protein within the cell while it adjusts to a new environment.

'The method can be used to reveal how a cell reacts to stress induced by a change in its environment. The information gained from this may eventually lead to a better understanding of how cells work and what they do to stay alive and healthy in a constantly changing environment', says Eriksson.

The thesis Towards quantitative single cell analysis using optical tweezers and microfluidics was defended at a disputation on April 29th.


Story Source:

The above story is based on materials provided by University of Gothenburg. Note: Materials may be edited for content and length.


Cite This Page:

University of Gothenburg. "Using High-precision Laser Tweezers To Juggle Cells." ScienceDaily. ScienceDaily, 19 May 2009. <www.sciencedaily.com/releases/2009/05/090515104221.htm>.
University of Gothenburg. (2009, May 19). Using High-precision Laser Tweezers To Juggle Cells. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/05/090515104221.htm
University of Gothenburg. "Using High-precision Laser Tweezers To Juggle Cells." ScienceDaily. www.sciencedaily.com/releases/2009/05/090515104221.htm (accessed April 24, 2014).

Share This



More Plants & Animals News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins