Featured Research

from universities, journals, and other organizations

How 'Invading' Bacteria Can Integrate Captured DNA Into Own Genetic Makeup

Date:
June 4, 2009
Source:
Texas A&M University
Summary:
Call it advanced warfare on the most elemental of levels. Researchers have discovered how certain types of bacteria integrate the DNA that they have captured from invading enemies into their own genetic makeup to increase their chances of survival.

Three-dimensional rendering of a biofilm.
Credit: Image courtesy of Texas A&M University

Call it advanced warfare on the most elemental of levels.

Researchers at Texas A&M University's Artie McFerrin Department of Chemical Engineering have discovered how certain types of bacteria integrate the DNA that they have captured from invading enemies into their own genetic makeup to increase their chances of survival.

To be more accurate, the genetic material isn't really captured as much as it is simply utilized after it's injected into the bacteria by an invading virus, says Professor Thomas K. Wood, who along with colleagues Xiaoxue Wang and Younghoon Kim has published the findings in Nature's 2009 International Society for Microbial Ecology Journal.

Wood's findings shed light on a millions-of-years-old battle between bacteria and bacteria-eating viruses known as "phages." Locked in an epic struggle, the two life forms, Woods explains, are constantly developing new ways to win the war. One such approach undertaken by a phage is to attach to a bacterial cell and, using a syringe-like tail apparatus, inject its genetic material into the bacterial cell. Once inside, the phage replicates itself and eventually exits the cell to find new bacteria to infect.

But as is the case with men, the best-laid plans of phages can also go astray.

Examining E. coli bacteria, Wood found that the bacteria developed a means of not allowing the phage to replicate and leave the cell of its own volition. Once the phage was effectively "captured," the bacteria incorporated the phage's DNA material into its own chromosomes. This new diverse blend of genetic material, Wood says, has helped the bacteria not only overcome the phage but also flourish at a greater rate than similar bacteria that have not incorporated the phage DNA.

"The bacteria are alive and doing well, and in fact the bacteria are doing better because it captured its enemy," Wood said. "Our research shows that if these bacteria didn't have this particular set of 25 genes that belonged to the old phage it wouldn't be able to grow as fast. If you removed the phage remnant, the bacteria grows five times slower on some carbon sources."

This distinct advantage is helping scientists understand why bacteria carry about 10-20 percent of genes that aren't their own. Simply put, carrying the virus DNA allows bacteria to increase their chances of survival by producing diverse progeny – something Wood says is extremely important when the bacteria choose to move to a new environment through a process known as dispersal.

Dispersal occurs, Woods says, when the bacterium can no longer glean the nutrients it needs from its surroundings or when other environmental conditions, such as temperature, have become unfavorable. Wood found that through an elaborate regulation method, the bacteria are able to retain the virus DNA or expel it. It's an interesting trade off, as retaining the virus DNA helps the bacteria grow faster but reduces its motility, which is needed when seeking out new environments, Wood explains.

Further exploring this dynamic, Wood and his research group were able to link this regulation process to the formation of bacterial communities called biofilms.

A biofilm, Wood says, is a protective, adhesive slime created by bacteria that have joined together to form a community and reap the benefits of a "strength-in-numbers" approach. Biofilms can grow on a variety of living and nonliving surfaces, including submerged rocks, food, teeth (as plaque) and biomedical implants such as knee and hip replacements.

The National Institutes of Health estimate that about 90 percent of infections in humans are caused by biofilms, and the Centers for Disease Control estimate biofilm to be present in 65 percent of hospital-acquired (nosocomial) infections. Biofilms typically are the cause of fatal infections that develop post surgery. More commonly, they are the source of persistent ear infections among children.

In addition to finding that biofilm formation relies heavily on virus genes present within the bacteria, Wood's research has shown the mechanism for how this takes place. A protein within the bacterium called Hha has the ability to control whether virus genes are kept within the bacterium or jettisoned. When Hha is basically "turned on," the bacteria expel the virus genes, opting for motility over the ability to form biofilms. Likewise, when Hha is not expressed, the bacteria move slower but grow biofilms at a much faster rate, Wood explains.

It's a finding that could impact everything from health care to research into alternative fuel production.

"If we can understand how biofilms are formed, we can begin to manipulate forming them where we want and getting them to not form where we don't want them," Wood says. "We have found a regulator – this Hha – that controls the genes related to biofilm formation. Now we can begin to envision ways to turn on that Hha gene if we want to get rid of biofilms, and that is what we are working on. That's the long-term goal – as engineers to make biofilms where we want them.

"For example, if we want to remediate soil, we'd form a biofilm on the roots of plants, plant the tree, and wherever the tree root goes we clean the soil. That's a beneficial biofilm. If I want to make hydrogen with E. coli, I'll probably want to do it in a biofilm, so I would want to promote the growth of the biofilm.

"We're one of the first labs in the world that has begun to not only try to understand how biofilms form but to control them."


Story Source:

The above story is based on materials provided by Texas A&M University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaoxue Wang, Younghoon Kim and Thomas K Wood. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. The ISME Journal, 2009; DOI: 10.1038/ismej.2009.59

Cite This Page:

Texas A&M University. "How 'Invading' Bacteria Can Integrate Captured DNA Into Own Genetic Makeup." ScienceDaily. ScienceDaily, 4 June 2009. <www.sciencedaily.com/releases/2009/06/090602161942.htm>.
Texas A&M University. (2009, June 4). How 'Invading' Bacteria Can Integrate Captured DNA Into Own Genetic Makeup. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/06/090602161942.htm
Texas A&M University. "How 'Invading' Bacteria Can Integrate Captured DNA Into Own Genetic Makeup." ScienceDaily. www.sciencedaily.com/releases/2009/06/090602161942.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins