Featured Research

from universities, journals, and other organizations

Ancient Mammals Shifted Diets As Climate Changed

Date:
June 3, 2009
Source:
University of Florida
Summary:
A new study shows mammals change their dietary niches based on climate-driven environmental changes, contradicting a common assumption that species maintain their niches despite global warming.

This fossilized horse (Equus) tooth shows where a series of enamel samples have been drilled to help identify seasonal fluctuations in the animal's diet. This horse lived about 1.9 million years ago during a glacial period in Florida.
Credit: Mary Warrick/University of Florida

A new University of Florida study shows mammals change their dietary niches based on climate-driven environmental changes, contradicting a common assumption that species maintain their niches despite global warming.

Related Articles


Led by Florida Museum of Natural History vertebrate paleontologist Larisa DeSantis, researchers examined fossil teeth from mammals at two sites representing different climates in Florida: a glacial period about 1.9 million years ago and a warmer, interglacial period about 1.3 million years ago. The researchers found that interglacial warming resulted in dramatic changes to the diets of animal groups at both sites.

"When people are modeling future mammal distributions, they're assuming that the niches of mammals today are going to be the same in the future," DeSantis said. "That's a huge assumption."

Co-author Robert Feranec, curator of vertebrate paleontology at the New York State Museum, said scientists cannot predict what species will do based on their current ecology.

"The study definitively shows that climate change has an effect on ecosystems and mammals, and that the responses are much more complex than we might think," Feranec said.

The two sites in the study, both on Florida's Gulf Coast, have been excavated quite extensively, DeSantis said. During glacial periods, lower sea levels nearly doubled Florida's width, compared with interglacial periods. But because of Florida's low latitude, no ice sheets were present during the glacial period. Despite the lack of glaciers in Florida, the two sites show dramatic ecological changes occurred between the two periods.

Both sites include some of the same animal groups, allowing DeSantis, Feranec and Bruce MacFadden, Florida Museum curator of vertebrate paleontology, to clarify how mammals and their environments responded to interglacial warming.

The research examined carbon and oxygen isotopes within tooth enamel to understand the diets of medium to large mammals, including pronghorn, deer, llamas, peccaries, tapirs, horses, mastodons, mammoths and gomphotheres, a group of extinct elephant-like animals.

Differences in how plants photosynthesize give them distinct carbon isotope ratios. For example, trees and shrubs process carbon dioxide differently than warm-season grasses, resulting in different carbon isotope ratios. These differences are incorporated in mammalian tooth enamel, allowing scientists to determine the diets of fossil mammals. Lower ratio values suggest a browsing diet (trees and shrubs) while a higher ratio suggests a grazing diet (grasses).

Animals at the glacial site were predominantly browsing on trees and shrubs, while some of those same animals at the warmer interglacial site became mixed feeders that also grazed on grasses. Increased consumption of grasses by mixed feeders and elephant-like mammals indicates Florida's grasslands likely expanded during interglacial periods.

Tooth enamel locks in the chemical signatures of the plants and water an animal consumes, allowing paleontologists to understand the diets and associated climate of fossil specimens that are millions of years old. To find these signatures, researchers run samples of tooth enamel through a mass spectrometer.

DeSantis and her collaborators analyzed enamel samples from 115 fossil teeth. For two of the specimens she took serial samples, small samples that run perpendicular to the growth axis and give insight into how the diet and climate changed over a specific period of time.

"That's one of the cool things about using mammal teeth," she said. "We can actually look at how variable the climate was within a year, millions of years ago."

The study highlights the importance of the fossil record in understanding long-term ecological responses to changes over time, DeSantis said. While ecological studies of modern impacts can cover only limited spans of time, "this study emphasizes the importance of using the fossil record to look at how mammals and other animals responded to climate change in the past, also helping us gain a better understanding of how they might respond in the future."


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Journal Reference:

  1. DeSantis LRG, Feranec RS, MacFadden BJ. Effects of Global Warming on Ancient Mammalian Communities and Their Environments. PLoS ONE, 4(6): e5750 DOI: 10.1371/journal.pone.0005750

Cite This Page:

University of Florida. "Ancient Mammals Shifted Diets As Climate Changed." ScienceDaily. ScienceDaily, 3 June 2009. <www.sciencedaily.com/releases/2009/06/090602204255.htm>.
University of Florida. (2009, June 3). Ancient Mammals Shifted Diets As Climate Changed. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/06/090602204255.htm
University of Florida. "Ancient Mammals Shifted Diets As Climate Changed." ScienceDaily. www.sciencedaily.com/releases/2009/06/090602204255.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins