Featured Research

from universities, journals, and other organizations

Microbes Found That Eat Hydrocarbons, And Leave Behind Non-toxic Residue

Date:
June 15, 2009
Source:
Inderscience Publishers
Summary:
Bioremediation of industrial sites and petrochemical spillages often involves finding microbes that can gorge themselves on the toxic chemicals. This leaves behind a non-toxic residue or mineralized material. Researchers in China describe studies of a new microbe that can digest hydrocarbons.

Bioremediation of industrial sites and petrochemical spillages often involves finding microbes that can gorge themselves on the toxic chemicals. This leaves behind a non-toxic residue or mineralized material. Writing in the International Journal of Environment and Pollution, researchers in China describe studies of a new microbe that can digest hydrocarbons.

Hong-Qi Wang and Yan-Jun Chen College of Water Sciences, Beijing Normal University, working with Bo-Ya Qin of the Ministry of Environmental Protection of China, have investigated the activity of enzymes from the bacterium Bacillus cereus DQ01, which can digest the hydrocarbon n-hexadecane. The bacterium was initially isolated from the Daqing oil field in North East China where it had evolved the ability to metabolize this chemical.

Bioremediation of hydrocarbons usually involves the application of a cultured bacterium that has been optimized to feed on the specific contaminants, such as particular hydrocarbons. The microbes are cultured first in the presence of sugar or another standard feedstuff in conjunction with a small amount of the pollutant material. Successive generations are fed an increasing proportion of the pollutant until their growth is optimized for digestion of that compound rather than the sugar.

These optimized microbes are applied to the contamination site or spill in large but controlled volumes and digest their way through the pollutant material, multiplying and digesting until no pollutant remains. The byproducts are non-toxic carbon dioxide and water, and mineralized matter.

The team has now found the optimal conditions for the Daqing microbe to feast on hydrocarbon, which could point the way to a more effective approach to bioremediation of spill sites.

The key step in the degradation of hydrocarbons normally depends on the presence of a multi-component enzyme system, the team explains. Understanding exactly which components are needed for degradation and the temperature and pH of the soil best suited to the process could help researchers develop the perfect microbial cleanup culture.

The team has now found that enzymes within the microbial cell and in its membrane inner membrane are responsible for degradation of n-hexadecane. The team found that neutral pH and a temperature of 30 Celsius are optimal for the microbe to produce the main degradation enzyme. They also point out that adding a small amount of a surfactant material, rhamnolipid, can also stimulate enzyme production and improve degradation efficiency.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Degradability of n-hexadecane by Bacillus cereus DQ01 isolated from oil contaminated soil from Daqing oil field, China. Int. J. Environment and Pollution, 2009, 38, 100-115

Cite This Page:

Inderscience Publishers. "Microbes Found That Eat Hydrocarbons, And Leave Behind Non-toxic Residue." ScienceDaily. ScienceDaily, 15 June 2009. <www.sciencedaily.com/releases/2009/06/090611110824.htm>.
Inderscience Publishers. (2009, June 15). Microbes Found That Eat Hydrocarbons, And Leave Behind Non-toxic Residue. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/06/090611110824.htm
Inderscience Publishers. "Microbes Found That Eat Hydrocarbons, And Leave Behind Non-toxic Residue." ScienceDaily. www.sciencedaily.com/releases/2009/06/090611110824.htm (accessed August 22, 2014).

Share This




More Earth & Climate News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Thousands Of Species Found In Lake Under Antarctic Ice

Thousands Of Species Found In Lake Under Antarctic Ice

Newsy (Aug. 20, 2014) — A U.S. team found nearly 4,000 species in a subglacial lake that hasn't seen sunlight in millennia, showing life can thrive even under the ice. Video provided by Newsy
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins