Featured Research

from universities, journals, and other organizations

Therapeutic Delivery Of A Gene To Dysfunctional Nerves

Date:
June 26, 2009
Source:
Journal of Clinical Investigation
Summary:
In many sensory neuronopathies, painful conditions affecting sensory nerves outside the brain and spinal cord, the affected nerves are in a region known as the DRG. These conditions are difficult to treat. However, researchers have now developed an approach to target therapeutic genes to DRG nerves, and used it to reduce sensory nerve dysfunction in a mouse model of Sandhoff disease, an inherited condition in which many nerves, including those in the DRG, are affected.

In many sensory neuronopathies, painful conditions affecting sensory nerves outside the brain and spinal cord, the affected nerves are in a region known as the DRG. These conditions are difficult to treat. However, researchers have now developed an approach to target therapeutic genes to DRG nerves, and used it to reduce sensory nerve dysfunction in a mouse model of Sandhoff disease, an inherited condition in which many nerves, including those in the DRG, are affected.

Medical conditions that affect sensory nerves outside the brain and spinal cord are known as sensory neuronopathies. These conditions, which are extremely painful, include shingles and can be caused by anticancer drugs such as cisplatin. In many sensory neuronopathies, the nerves that are dysfunctional are those in a region of the body known as the dorsal root ganglion (DRG), and these conditions are particularly difficult to treat. However, Lawrence Chan and colleagues, at Baylor College of Medicine, Houston, have developed an approach to target therapeutic genes to nerves in the DRG, and used it to reduce sensory nerve dysfunction in a mouse model of Sandhoff disease, an inherited condition in which many nerves, including those in the DRG, are affected.

The authors developed a system to generate helper-dependent adenoviruses that targeted only DRG nerves. These were used to deliver genes to DRG nerves in mice and found to be dramatically more efficient at gene delivery than nontargeted helper-dependent adenoviruses. In mice lacking the Hexb gene, which are consider a mouse model of Sandhoff disease, administration of DRG-targeted helper-dependent adenoviruses carrying the Hexb gene restored Hexb expression in DRG nerves and eliminated sensory nerve dysfunction. The authors hope this approach could be developed for treating different forms of DRG sensory neuronopathies.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Terashima et al. DRG-targeted helper-dependent adenoviruses mediate selective gene delivery for therapeutic rescue of sensory neuronopathies in mice. Journal of Clinical Investigation, 2009; DOI: 10.1172/JCI39038

Cite This Page:

Journal of Clinical Investigation. "Therapeutic Delivery Of A Gene To Dysfunctional Nerves." ScienceDaily. ScienceDaily, 26 June 2009. <www.sciencedaily.com/releases/2009/06/090615171509.htm>.
Journal of Clinical Investigation. (2009, June 26). Therapeutic Delivery Of A Gene To Dysfunctional Nerves. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2009/06/090615171509.htm
Journal of Clinical Investigation. "Therapeutic Delivery Of A Gene To Dysfunctional Nerves." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615171509.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins