Featured Research

from universities, journals, and other organizations

Novel Epigenetic Markers Of Melanoma May Herald New Treatments For Patients

Date:
June 30, 2009
Source:
Cold Spring Harbor Laboratory
Summary:
Melanoma is the most serious form of skin cancer, diagnosed in more than 50,000 new patients in the United States annually. As incidences continue to rise, the race is on to find the genetic and cellular changes driving melanoma, and to devise new means of detection and treatment. In new a study, scientists have found new epigenetic markers that will help develop more effective treatment strategies to fight this disease.

Melanoma is the most serious form of skin cancer, diagnosed in more than 50,000 new patients in the United States annually. While the rate of incidences continues to rise, survival rate has not improved and the race is on to find the genetic and cellular changes driving melanoma and to devise new means of detection and treatment. In a study published online in Genome Research, scientists have mapped chemical modifications of DNA in the melanoma genome, finding new markers that will help develop more effective treatment strategies to fight this disease.

Related Articles


In addition to mutations to the DNA code that can cause malignancies, epigenetic changes – alterations to the chemical modifications of DNA that regulate genes – are frequent in a number of diseases, including cancer. If the normal epigenetic patterns that regulate gene expression are disrupted, cellular functions can go awry and lead to disease.

In this work, researchers led by Drs. Ruth Halaban and Sherman Weissman of Yale University investigated genome-wide epigenetic changes, termed DNA methylation, in melanoma cells. "This is of particular importance in melanomas, because a major etiological factor is sun exposure," Halaban said, explaining that inflammation and reactive oxygen species caused by the sun can produce epigenetic changes and mutations. Halaban added that because DNA methylation can be reversed, it is an attractive target for cancer therapy.

The group surveyed DNA methylation at gene regulatory regions, known as promoters, in both normal melanocytes and melanoma cells. They found 76 promoters with altered methylation patterns in melanomas, most of these showing increased methylation compared to normal. Promoter methylation is correlated with repression of the downstream gene, and this finding is consistent with other research indicating that cancer cells are using DNA methylation to turn off genes that normally inhibit malignancy.

The team then focused on five genes in particular, three of which had not been implicated in melanoma until now. In clinical specimens, methylation of these promoters was predominantly detected in advanced-stage tumors, suggesting that these markers will be useful for monitoring tumor progression. Furthermore, they found that by treating melanoma cells with a drug called decitabine, an inhibitor of DNA methylation, these genes could be reactivated. Decitabine is effective in some patients suffering from cancers such as acute myeloid leukemia and chronic myeloid leukemia, so the identification of these methylation markers is promising for new clinical trials evaluating the efficacy of treatment of melanoma with this drug.

Relapse of melanoma is extremely difficult to predict, and Halaban emphasized that inaccurate estimation of the malignant potential of lesions can have dire consequences for patients. However, the authors are hopeful that these epigenetic markers may provide a better method for determining the aggressiveness of the disease and for setting a course of treatment.

Halaban expects that by combining their method for finding methylation markers with the latest DNA sequencing technologies, researchers will be able to uncover genes where an interaction between genetic mutations and epigenetic changes play a role in the development of melanoma, and perhaps other cancers. With this information in hand, researchers can then devise even more effective strategies to combat the disease.

Scientists from Yale University (New Haven, CT) contributed to this study.

This work was supported by the SPORE in Skin Cancer grant from the National Cancer Institute.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro AM, Halaban R, Weissman SM. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Research, 2009; DOI: 10.1101/gr.091447.109

Cite This Page:

Cold Spring Harbor Laboratory. "Novel Epigenetic Markers Of Melanoma May Herald New Treatments For Patients." ScienceDaily. ScienceDaily, 30 June 2009. <www.sciencedaily.com/releases/2009/06/090629165601.htm>.
Cold Spring Harbor Laboratory. (2009, June 30). Novel Epigenetic Markers Of Melanoma May Herald New Treatments For Patients. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/06/090629165601.htm
Cold Spring Harbor Laboratory. "Novel Epigenetic Markers Of Melanoma May Herald New Treatments For Patients." ScienceDaily. www.sciencedaily.com/releases/2009/06/090629165601.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins