Featured Research

from universities, journals, and other organizations

Inexpensive Solar Cells: Low-cost Solution Processing Method Developed For CIGS-based Solar Cells

Date:
July 11, 2009
Source:
University of California - Los Angeles
Summary:
Material science specialists and engineers have developed a low-cost solution processing method for their CISS (copper-indium-diselenide) solar cells which have the potential to be produced on a commercial scale.

Though the solar industry today predominately produces solar panels made from crystalline silicon, they remain relatively expensive to make. New players in the solar industry have instead been looking at panels that can harvest energy with CIGS (copper-indium-gallium-selenide) or CIGS-related materials. CIGS panels have a high efficiency potential, may be cheaper to produce and would use less raw materials than silicon solar panels.

But unfortunately, manufacturing of CIGS panels on a commercial scale has thus far proven to be difficult.

Recently researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a low-cost solution processing method for CIGS-based solar cells that could provide an answer to the manufacturing issue. In a new study to be published in the journal Thin Solid Films on July 7, Yang Yang, a professor in the school's Department of Materials Science and Engineering, and his research team show how they have developed a low-cost solution processing method for their copper-indium-diselenide solar cells which have the potential to be produced on a large scale.

"This CIGS-based material can demonstrate very high efficiency," said William Hou, a graduate student on Yang's team and first author of the study. "People have already demonstrated efficiency levels of up to 20 percent, but the current processing method is costly. Ultimately the cost of fabricating the product makes it difficult to be competitive with current grid prices. However, with the solution process that we recently developed, we can inherently reach the same efficiency levels and bring the cost of manufacturing down quite significantly."

The copper-indium-diselenide thin-film solar cell developed by Yang's team achieved 7.5 percent efficiency in the published study but has in a short amount of time already improved to 9.13 percent in the lab.

"We started this process 16 months ago from ground zero. We spent three to four months getting the material to reach 1 percent and today it's around 9 percent. That is about an average increase of 1 percent every two months," said Yang, also a member of the California NanoSystems Institute, where some of the work is being done.

Currently, most CIGS solar cells are produced using vacuum evaporation techniques called co-evaporation, which can be costly and time-consuming. The active elements — copper, indium, gallium and selenide — are heated and deposited onto a surface in a vacuum. Using vacuum processing to create CIGS films with uniform composition on a large scale has also been challenging.

The copper-indium-diselenide material created by Yang's team does not need to go through the vacuum evaporation process. Their material is simply dissolved into a liquid, applied and baked. To prepare the solution, Yang's team used hydrazine as the solvent to dissolve copper sulfide and indium selenide in order to form the constituents for the copper-indium-diselenide material. In solar cells, the "absorber layer" (either copper-indium-diselenide or CIGS) itself is the most critical to performance and the most difficult to control. Their copper-indium-diselenide layer, which is in solution form, can be easily painted or coated evenly onto a surface and baked.

"In our method, material utilization is one advantage. Another advantage is our solution technology has the potential to be fabricated in a continuous roll-to-roll process. Both are important breakthroughs in terms of cost," said Hou.

The team's goal is to reach an efficiency level of 15 to 20 percent. Yang predicts three to four years before commercialization.

"As we continue to work on enhancing the performance and efficiency of the solar cells, we also look forward to opportunities to collaborate with industry in order to develop this technology further. We hope this technology will lead to a new green energy company in the U.S., especially here in California so that it may also bring job opportunities to many who need it," said Yang.

The study was funded in part by the NSF Integrative Graduate Education and Research Traineeship-Materials Creation Training Program.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Inexpensive Solar Cells: Low-cost Solution Processing Method Developed For CIGS-based Solar Cells." ScienceDaily. ScienceDaily, 11 July 2009. <www.sciencedaily.com/releases/2009/07/090707131901.htm>.
University of California - Los Angeles. (2009, July 11). Inexpensive Solar Cells: Low-cost Solution Processing Method Developed For CIGS-based Solar Cells. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/07/090707131901.htm
University of California - Los Angeles. "Inexpensive Solar Cells: Low-cost Solution Processing Method Developed For CIGS-based Solar Cells." ScienceDaily. www.sciencedaily.com/releases/2009/07/090707131901.htm (accessed April 23, 2014).

Share This



More Earth & Climate News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) — NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins