Featured Research

from universities, journals, and other organizations

New Information About DNA Repair Mechanism Could Lead To Better Cancer Drugs

Date:
July 20, 2009
Source:
Washington University School of Medicine
Summary:
Researchers have shed new light on a process that fixes breaks in the genetic material of the body's cells. Their findings could lead to ways of enhancing chemotherapy drugs that destroy cancer cells by damaging their DNA.

An illustration of two proteins involved in DNA repair by artist Amy VanDonsel.
Credit: Image courtesy of Washington University School of Medicine

Researchers at Washington University School of Medicine in St. Louis have shed new light on a process that fixes breaks in the genetic material of the body's cells. Their findings could lead to ways of enhancing chemotherapy drugs that destroy cancer cells by damaging their DNA.

Related Articles


Using yeast cells, the scientists studied protein molecules that have an important role in homologous recombination, which is one way that cells repair breaks in the DNA double helix. The process in yeast is similar to that in humans and other organisms.

Earlier research had established that a protein molecule named Srs2 regulates homologous recombination by counteracting the work of another protein, Rad51. Reporting in the July 10 issue of the journal Molecular Cell, the research team reveals the mechanism of how Srs2 removes Rad51 from DNA and thereby prevents it from making repairs to broken strands.

"Our findings may make it possible to uncover ways to augment the effect of DNA-damaging agents that are used for cancer chemotherapy," says senior author Tom Ellenberger, D.V.M, Ph.D., the Raymond H. Wittcoff Professor and head of the Department of Biochemistry and Molecular Biophysics. "Many chemotherapeutic agents work by causing DNA damage in cancer cells, leading to their death, and tumors can become resistant to chemotherapy by using DNA repair mechanisms to keep the cells alive. Drugs that inhibit the DNA repair process could help increase the efficiency of chemotherapeutic agents."

Ellenberger is also co-director of the Pharmacology Core at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University. The facility aids in the development of anti-cancer agents.

Srs2 is a helicase molecule — a motor protein that's able to walk or slide along a strand of DNA and remove other proteins from DNA or separate the two strands of the twisted double helix. For studies of Srs2, Ellenberger's laboratory collaborated with Timothy Lohman, Ph.D., the Marvin A. Brennecke Professor of Biochemistry and Molecular Biophysics, a prominent expert in the biochemistry of motor proteins like Srs2.

Rad51's job in the cell is to promote the exchange of sequences between two related DNA molecules, which can be used to repair breaks in DNA where both strands of the double helix are compromised. As a DNA matchmaker, Rad51 forms long filaments on DNA. Srs2 can remove these to prevent unwanted exchanges of DNA sequences. Without Srs2, cells lose their ability to maintain the normal structure of chromosomes, and DNA sequences become shuffled.

The biochemists found that Srs2 possesses a small arm that interacts with Rad51 and triggers a chemical reaction within the Rad51 protein causing it to fall off the DNA.

"Scientists had assumed that as Srs2 moved along the DNA strand, it just pushed off everything in its path," says lead author Edwin Antony, Ph.D., a postdoctoral research associate in biochemistry and molecular biophysics. "This isn't the case — we showed that Srs2 has a specialized structure that allows it to interact specifically with Rad51."

This finding shows how a motor protein like Srs2 can perform the specialized task of remodeling a protein-DNA complex without interference by other similar helicases, he adds.

Because they now know more precisely the nature of this interaction between Srs2 and Rad51, the researchers can narrow their search for drugs that will block DNA repair by Rad51. This type of drug could make a lower dose of a DNA-damaging drug effective in treating cancer.

The research team is now trying to identify the Srs2 homologue in human cells and will study its structure in combination with Rad51. That will allow a more rational approach to understanding how cells cope with DNA damage and how some tumors evade cancer therapeutics, they say.

"In the long-term, my laboratory will look for drug-like molecules that influence this interaction," Ellenberger says. "We are using the Chemical Genetics Screening Center here at the University. It has vast libraries of molecules that may have the activity we want. Edwin's work on Srs2 and Rad51 will allow us to develop an assay to screen for agents that augment or supersede Srs2's interference with DNA repair."

Funding from the National Institutes of Health and the Young Scientist Program at Washington University supported this research.



Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Antony et al. Srs2 Disassembles Rad51 Filaments by a Protein-Protein Interaction Triggering ATP Turnover and Dissociation of Rad51 from DNA. Molecular Cell, 2009; 35 (1): 105 DOI: 10.1016/j.molcel.2009.05.026

Cite This Page:

Washington University School of Medicine. "New Information About DNA Repair Mechanism Could Lead To Better Cancer Drugs." ScienceDaily. ScienceDaily, 20 July 2009. <www.sciencedaily.com/releases/2009/07/090716201134.htm>.
Washington University School of Medicine. (2009, July 20). New Information About DNA Repair Mechanism Could Lead To Better Cancer Drugs. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/07/090716201134.htm
Washington University School of Medicine. "New Information About DNA Repair Mechanism Could Lead To Better Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/2009/07/090716201134.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com
British Navy Ship Arrives in Sierra Leone With Ebola Aid

British Navy Ship Arrives in Sierra Leone With Ebola Aid

AFP (Oct. 30, 2014) The British ship RFA ARGUS arrived in Sierra Leone to deliver supplies and equipment to help the fight against Ebola. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins