Featured Research

from universities, journals, and other organizations

Nanoparticle-delivered 'Suicide' Genes Slowed Ovarian Tumor Growth

Date:
July 31, 2009
Source:
American Association for Cancer Research
Summary:
Nanoparticle delivery of diphtheria toxin-encoding DNA selectively expressed in ovarian cancer cells reduced the burden of ovarian tumors in mice, and researchers expect this therapy could be tested in humans within 18 to 24 months.

Nanoparticle delivery of diphtheria toxin-encoding DNA selectively expressed in ovarian cancer cells reduced the burden of ovarian tumors in mice, and researchers expect this therapy could be tested in humans within 18 to 24 months, according to a report in Cancer Research.

Although early stage ovarian cancer can be treated with a combination of surgery followed by chemotherapy, there are currently no effective treatments for advanced ovarian cancer that has recurred after surgery and primary chemotherapy. Therefore, the majority of treated early stage cancers will relapse.

"This report is definitely a reason to hope. We now have a potential new therapy for the treatment of advanced ovarian cancer that has promise for targeting tumor cells and leaving healthy cells healthy," said lead researcher Janet Sawicki, Ph.D., a professor at the Lankenau Institute for Medical Research.

Sawicki and colleagues at the Massachusetts Institute of Technology evaluated the therapeutic efficacy of a cationic biodegradable beta-amino ester polymer as a vector for the nanoparticle delivery of a DNA encoding diphtheria toxin suicide gene. These nanoparticles were injected into mice with primary or metastatic ovarian tumors.

To test the efficacy of this technique, the researchers measured tumor volume before and after treatment. They found that while treated tumors increased 2-fold, this was significantly less than the between 4.1-fold and 6-fold increase in control mice.

Furthermore, four of the treated tumors failed to grow at all, while all control tumors increased in size. Administration of nanoparticles to three different ovarian cancer mouse models prolonged lifespan by nearly four weeks and suppressed tumor growth more effectively, and with minimal non-specific cytotoxicity, than in mice treated with clinically relevant doses of cisplatin and paclitaxel.

Edward Sausville, M.D., Ph.D., an associate editor of Cancer Research and associate director for clinical research at the Greenebaum Cancer Center at the University of Maryland, said this report illustrates significant progress in targeted therapy.

"In oncology we have been studying ways to kill tumors for a long time, but much of this has run up against the real estate principle of location, location, location," he said. "In other words, an effective therapy is not effective if it cannot get to the target."

Sausville said a major accomplishment of this research is the multiple ways it can target ovarian cancer cells, as scientists were able to deliver diphtheria toxin genes, using a nanoparticle, to the actual tumor site (peritoneum) with a basis for selective activity in the cancer cells (how the toxin genes were regulated once inside the cells).

"A real plus of a cancer therapy like this is not just the functionality of the nanoparticle construct molecule, but the ability to deliver the toxin to the tumor cells," said Sausville, who agrees that inception of clinical trials could be just 18 months away.


Story Source:

The above story is based on materials provided by American Association for Cancer Research. Note: Materials may be edited for content and length.


Cite This Page:

American Association for Cancer Research. "Nanoparticle-delivered 'Suicide' Genes Slowed Ovarian Tumor Growth." ScienceDaily. ScienceDaily, 31 July 2009. <www.sciencedaily.com/releases/2009/07/090730073607.htm>.
American Association for Cancer Research. (2009, July 31). Nanoparticle-delivered 'Suicide' Genes Slowed Ovarian Tumor Growth. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/07/090730073607.htm
American Association for Cancer Research. "Nanoparticle-delivered 'Suicide' Genes Slowed Ovarian Tumor Growth." ScienceDaily. www.sciencedaily.com/releases/2009/07/090730073607.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins